TECHNICAL KNOWLEDGE EXCHANGE ON RESILIENT TRANSPORT

SUMMARY REPORT
This Technical Knowledge Exchange (TKX) was organized by the World Bank Disaster Risk Management Hub, Tokyo, in collaboration with the World Bank's Resilient Transport Community of Practice (CoP) in partnership with the government of Japan (Ministry of Finance (MoF); Ministry of Land, Infrastructure, Transport and Tourism (MLIT)). The TKX also benefited greatly from contributions by the following: the Global Facility for Disaster Reduction and Recovery (GFDRR), Japan International Cooperation Agency (JICA), Iwate Reconstruction Bureau, Hyogo Prefecture, Kyoto University, Nippon Expressway Company (NEXCO), Japan Bosai Platform, and World Road Association (PIARC).

TECHNICAL KNOWLEDGE EXCHANGE (TKX)

ON RESILIENT TRANSPORT

Summary Report

MAY 8–12 2017
CONCEPT: The Technical Knowledge Exchange (TKX)

Technical Knowledge Exchange (TKX) integrates workshops, site visits, peer-to-peer knowledge sharing, and action planning to support World Bank clients on specific topics. TKX both facilitates knowledge sharing and provides ongoing support to connect clients with technical experts and best practices in close collaboration with the World Bank’s Communities of Practice (CoPs).

The TKXs have four core elements:

1. Objective-focused structure: Demand-driven and problem-solving orientation, with possible technical assistance, including consultation and expert visits to client nations through the World Bank’s City Resilience Program and other programs.

2. Knowledge exchange to foster operations: Knowledge exchange, just-in-time assistance, and potential technical assistance for clients and World Bank task teams.

3. Structured learning: Delivery of structured learning for clients and partners such as e-learning courses and a package of selected knowledge exchange instruments before, during, and after the Technical Knowledge Exchange in Japan.

4. Application to knowledge networks: Contribution of relevant inputs to CoPs to support development of their knowledge assets (such as case studies and best-practice lessons) and to disseminate them to the broader community.

This report was prepared by World Bank staff. The findings, interpretations, and conclusions expressed here do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent.

The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries.

Rights and Permissions: The World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution to the work is given. The material in this work is subject to copyright.

© 2017 International Bank for Reconstruction and Development / International Development Association or The World Bank
1818 H Street NW
Washington DC 20433
ACKNOWLEDGMENTS

This summary report was produced by:

MARC FORNI
Lead Disaster Risk Management Specialist, Social, Urban, Rural and Resilience Global Practice, World Bank

JAMES (JAY) NEWMAN
Disaster Risk Management Specialist, Global Facility for Disaster Reduction and Recovery (GFDRR)

AKIKO TOYA
Junior Professional Officer, GFDRR

VIJBHU JAIN
Consultant, GFDRR

SHANIKA HETTIGE

The task team leaders and clients in attendance for each country are listed below:

Afghanistan: Luqman Tian (senior transport specialist, Transport & ICT Global Practice, World Bank); Hamid Sayed Abdul Manan (senior contract engineer, NARP, MPH); Noori Mohammad Salam (senior road design engineer, TRHCP, MPH)

Argentina: Verónica Raffo (senior infrastructure specialist, Transport & ICT Global Practice, World Bank); Andrés Gartner (chief adviser, Ministry of Transport), Emilia Albrieu (general manager, Vialidad Nacional)

Brazil: Sabath Ojota (senior transport specialist, Transport & ICT Global Practice, World Bank); Júlia Maria Tiemi Furuya (coordinator, road transport programs, Ministry of Transport, Ports, and Civil Aviation); Fabio Pessoa da Silva Nunes (general coordinator, maintenance and road restoration, National Department of Transport Infrastructure)

Cambodia: Chain Monmanipvuth (infrastructure specialist, Transport & ICT Global Practice, World Bank); Pom Chreay (director, Department of Rural Health Care, Ministry of Rural Development); Phirthong Kang (deputy director, Equipment and Road Construction Department, Ministry of Public Works and Transport)

Colombia: Mauricio Cuellar (senior transport specialist, Transport & ICT Global Practice, World Bank); Magda Constanza Buitrago Rissi (adviser to the deputy minister of transport, Ministry of Transport), Norma Castellanos (environmental infrastructure adviser, National Planning Department)

Georgia: Robert Mutyaba (transport specialist, Transport & ICT Global Practice, World Bank); Gia Sepazid (head, Roads Department, Ministry of Regional Development and Infrastructure)

India: Ashok Kumar (senior highway engineer, Transport & ICT Global Practice, World Bank); Rajesh Bhushan (joint secretary, Ministry of Rural Development); Vinay Kumar (secretary, Rural Works Department, State Government of Bihar); Rajeev Nayan Prasad Singh (project director and superintendent engineer, Bihar Rural Roads Project, State Government of Bihar)

Kyrgyz Republic: Cordula Rastogi (senior transport economist, Trade & Competitiveness Global Practice, World Bank); Zhambulbek Kaliyov (minister, Ministry of Transport and Roads); Rustanbek Satylakhov (program coordinator, Ministry of Transport and Roads)

Laos: Sombrath Souchthieving (senior infrastructure specialist, Transport & ICT Global Practice, World Bank); Lamsam Phounganhdy (deputy director, Roads Maintenance Division, Ministry of Public Works and Trade); Litta Khatriza (deputy director general, Department of Roads, Ministry of Public Works and Trade)

Mozambique: Francisco Manuel Da Cunha (senior highway engineer, Road Fund); Emilie Tome Boene (environmental specialist, National Road Administration); Francisco Alvaro (technician, international relations, Road Fund); Jorge Tomás Muonima (civil engineer, National Road Administration)

Myanmar: Haneka Bracht (senior infrastructure specialist, Social, Urban, Rural & Resilience Global Practice, World Bank); Moe Myo Htun (director, Department of Highway)

Philippines: Victor Oato (senior infrastructure specialist, Transport & ICT Global Practice, World Bank); Maria Teresa H. Concepcion (local government operations officer V, Department of the Interior); Paul Irene P. Montano (local government operations officer V, Department of the Interior)

Serbia: Dorko Milutin (disaster risk management specialist, Social, Urban, Rural & Resilience Global Practice, World Bank);

Peter Kraic (Adviser Department for Road Transport, Roads and Road Safety, Ministry of Construction, Transport and Infrastructure); Stobdan Basurc (head, Belgrade Department for Road Maintenance and Preservation)

Sri Lanka: Amali Rajapaksa (senior infrastructure specialist, Transport & ICT Global Practice, World Bank); Nimal Chandrasiri (additional director general, construction design, Road Development Authority); Shyamalee Karunasekera (deputy director, planning, Highway Information and Development Management System, Road Development Authority)

Tajikistan: Aidai Bayalieva (transport specialist, Transport & ICT Global Practice, World Bank); Zhamshitbek Kalilov (head, foreign investments cooperation, Department of Ministry of Transport)

Vietnam: Phuong Thi Menh Tran (senior transport specialist, Transport & ICT Global Practice, World Bank); To Nam Tran (director, science technology, environment and international cooperation, Department of Directorate for Roads); Tran Anh Duong (director general, Department of Environment, Ministry of Transport)

The report greatly benefited from the information and support provided by:

The government of Japan

Ministry of Finance and Ministry of Land, Infrastructure, Transport and Tourism

Japan International Cooperation Agency (JICA)

Hyogo Prefecture, Japan

Kyoto University, Japan

New Zealand Climate Adaptation Platform

University of Auckland

We thank the participating officials and project task teams for their presentations, active involvement, and knowledge sharing.

TABLE OF FIGURES

FIGURE 1
Japan’s Institutional Framework for Disaster Management System

FIGURE 2
A Profile of the Risks Participating Countries Identified

FIGURE 3
Key Themes of the TKX

FIGURE 4
Disaster-Resilient Infrastructure: Life-Cycle Approach

FIGURE 5
NEXCO’s Eight-directions Strategy

FIGURE 6
DiMAPS showing the damage of 2016 Kumamoto Earthquake

FIGURE 7
Surface and Pavement Waterproofing

FIGURE 8
Modeling the Economics of Resilient Infrastructure Tool (MERIT)

FIGURE 9
Landslide Countermeasures

FIGURE 10A
Suggested New Approach to Consequence

FIGURE 10B
The Kyoto Model of Road Asset Management vs. Previous Models

FIGURE 11
Hyogo Prefecture’s Infrastructure Data Management Systems

FIGURE 12
The Kyoto Model of Road Asset Management vs. Previous Models

FIGURE 13
Thailand’s Institutional Framework for Disaster Management System. 6

FIGURE 14
Disaster-Resilient Infrastructure: Life-Cycle Approach

FIGURE 15
The Kyoto Model of Road Asset Management vs. Previous Models

FIGURE 16
The Kyoto Model of Road Asset Management vs. Previous Models

FIGURE 17
Hyogo Prefecture’s Infrastructure Data Management Systems

FIGURE 18
Surface and Pavement Waterproofing

FIGURE 19
Modeling the Economics of Resilient Infrastructure Tool (MERIT)

FIGURE 20
A Profile of the Risks Participating Countries Identified

FIGURE 21
Surface and Pavement Waterproofing

FIGURE 22
Modeling the Economics of Resilient Infrastructure Tool (MERIT)

FIGURE 23
The Kyoto Model of Road Asset Management vs. Previous Models

FIGURE 24
Disaster-Resilient Infrastructure: Life-Cycle Approach

FIGURE 25
The Kyoto Model of Road Asset Management vs. Previous Models

FIGURE 26
Modeling the Economics of Resilient Infrastructure Tool (MERIT)

FIGURE 27
Landslide Countermeasures

FIGURE 28
Surface and Pavement Waterproofing

FIGURE 29
Modeling the Economics of Resilient Infrastructure Tool (MERIT)

FIGURE 30
DiMAPS showing the damage of 2016 Kumamoto Earthquake

FIGURE 31
NEXCO’s Eight-directions Strategy

FIGURE 32
Modeling the Economics of Resilient Infrastructure Tool (MERIT)

FIGURE 33
Primary Ministries and Agencies of Japan for DRM

FIGURE 34
A Profile of the Risks Participating Countries Identified

FIGURE 35
Surface and Pavement Waterproofing

FIGURE 36
Modeling the Economics of Resilient Infrastructure Tool (MERIT)

FIGURE 37
A Profile of the Risks Participating Countries Identified

FIGURE 38
Surface and Pavement Waterproofing

FIGURE 39
Modeling the Economics of Resilient Infrastructure Tool (MERIT)

FIGURE 40
A Profile of the Risks Participating Countries Identified

FIGURE 41
Surface and Pavement Waterproofing

FIGURE 42
Modeling the Economics of Resilient Infrastructure Tool (MERIT)
Transport infrastructure represents a significant public and private investment that is fundamental to the functioning and development of economies and societies. As such, transport investments have been integral to the World Bank's partnerships with client countries. Since 2002, more than 260,000 kilometers of road were constructed or rehabilitated through World Bank-supported projects. However, these investments are increasingly exposed to disaster and climate hazards, including landslides, flooding, and earthquakes. To manage and reduce the risks these hazards may pose, low- and middle-income countries are seeking new approaches to plan, design, construct, operate, and maintain their transportation systems.

On May 8–12, 2017, the World Bank Disaster Risk Management (DRM) Hub in Tokyo and the Resilient Transport Community of Practice (CoP) hosted a week-long Technical Knowledge Exchange (TKX) in Tokyo that convened clients and World Bank task team leaders (TTLs) from 16 countries to share concepts and practices on resilient transport, including systems planning, engineering and design, asset management, and contingency programming. The exchange drew upon Japanese and international experts to showcase innovative approaches and practical advice for facing the challenges when addressing risk management planning for the transport sector. Country representatives and World Bank teams learned from one another and from Japan's challenges and successes with large-scale disasters. One key lesson was that continuously reviewing and enhancing domestic practices and regulations will ultimately increase the resilience of transport networks.

The Resilient Transport TKX also served as a platform for the launch of the new Road Geohazard Risk Management Handbook developed under the Hub's Knowledge Program. The tool was presented alongside case studies of its application across federal, state, and municipal levels in Brazil and Serbia. The Handbook itself urges a shift away from traditional and reactive approaches towards a multidimensional geohazard risk management approach that incorporates people, the environment, hydrology, and geology as well as transportation infrastructure so that such proactive methodology can result in 60–70 percent life-cycle cost savings. Going forward, the Resilient Transport CoP will continue to connect current and future World Bank transport investments with the information, tools, and technical expertise that exist in Japan and in many countries in the area of resilient transport.
Participant Profile and Challenges Faced

The TKX brought together World Bank staff working in five regions; experts from Japan and New Zealand; and client delegations from Afghanistan, Argentina, Brazil, Cambodia, Colombia, Georgia, India, the Kyrgyz Republic, the Lao People’s Democratic Republic, Mozambique, Myanmar, the Philippines, Serbia, Sri Lanka, Tajikistan, and Vietnam. FIGURE 1: 60 percent of the attendees represented the transport sector, while the other 40 percent comprised individuals working in the infrastructure and public works and disaster risk management (DRM) fields. Country representatives shared their unique challenges, practices, and lessons learned with over 70 people who participated in the exchange. Each country presented a lightning talk on the disaster risks affecting their own transport sectors (FIGURE 2) and the methods they employ to make them more resilient. This ultimately informed each country as they developed action plans.

TABLE OF CLIENT COUNTRIES AND SUPPORTED PROJECTS

<table>
<thead>
<tr>
<th>Country</th>
<th>Project/Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>• AF: Afghanistan Rural Access Project (P125961)</td>
</tr>
<tr>
<td></td>
<td>• Trans-Hindukush Road Connectivity Project (P145347)</td>
</tr>
<tr>
<td>Argentina</td>
<td>• Northwestern Road Corridor (P163115)</td>
</tr>
<tr>
<td>Brazil</td>
<td>• São Paulo Sustainable Transport Project (P127723)</td>
</tr>
<tr>
<td>Colombia</td>
<td>• KH: Road Asset Management Project II (P150572)</td>
</tr>
<tr>
<td>Colombia</td>
<td>• CO Support Natl Urban Transit Program (P117947)</td>
</tr>
<tr>
<td>Egypt</td>
<td>• GE: Climate Resilience of Road Network (P162222)</td>
</tr>
<tr>
<td>India</td>
<td>• IN: PMGSY Rural Roads Project (P124639)</td>
</tr>
<tr>
<td></td>
<td>• BRRP (P155522)</td>
</tr>
<tr>
<td>Kyrgyz Republic</td>
<td>• Central Asia Regional Links - Phase 3 (P159220)</td>
</tr>
<tr>
<td>Lao PDR</td>
<td>• Lao Road Sector Project 2 (P158504)</td>
</tr>
<tr>
<td></td>
<td>• Lao PDR Southeast Asia DRM Project (P160930)</td>
</tr>
<tr>
<td>Mozambique</td>
<td>• MZ-APL2 Roads & Bridges (P083325)</td>
</tr>
<tr>
<td></td>
<td>• Feeder Road Project (P158231)</td>
</tr>
<tr>
<td>Myanmar</td>
<td>• Flood and Landslide Emergency Recovery C (P151819)</td>
</tr>
<tr>
<td>Philippines</td>
<td>• Technical assistance on Local Roads Management (P162622)</td>
</tr>
<tr>
<td>Serbia</td>
<td>• Corridor X Highway AF (P158413)</td>
</tr>
<tr>
<td></td>
<td>• Implementing Open Data Plan for Serbia (P162777)</td>
</tr>
<tr>
<td>South Asia</td>
<td>• Nepal-India Reg Trade & Transport Pr (P144355)</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>• Transport Sector Project (P132833)</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>• RSIP (P159707)</td>
</tr>
<tr>
<td>Vietnam</td>
<td>• Vietnam Road Asset Management Project (P123961)</td>
</tr>
<tr>
<td></td>
<td>• Local Road Asset Management Program (P155086)</td>
</tr>
</tbody>
</table>

Together, these projects represent more than US$5 billion in government-led investment, supported by the World Bank.
1. Understanding disaster (that is, geohazard) risks faced by the transport sector and system planning-based approaches to manage these risks

2. Showcasing Japan and global good practices on asset management technologies and institutional and financial mechanisms

3. Exploring innovative materials and structures to reduce vulnerability

4. Learning from Japan’s emergency management response and contingency planning efforts

5. Examining how transport infrastructure can be used as protection against hydrometeorological events

The TKX included six main sessions (including 14 lectures) on the principles of resilient transport, about which the experts from Japan offered relevant experience; two keynote addresses; two field visits, and two workshops.

Key Takeaways

- Investments in accurate data collection, archiving, analyzing, and sharing systems are crucial. A comprehensive system should be developed that focuses on the entire value chain, from data collection and analysis to efficient service delivery. Long-term planning, institutional aspects, and data systems are key for sustainability of investments.

- Capacity building of the stakeholders, through training and site visits, promotes well-coordinated, long-lasting, and effective resilient transport planning. Participants were specifically interested in developing asset management tools; implementing comprehensive geohazard management systems; and sharing technical guidance notes, case studies, and terms of reference.

- Incorporating climate and DRM in the transport sector life cycle is essential, and effective resilient transport management systems are built on legal and regulatory frameworks that define clear responsibilities and roles of different stakeholders, such as governments, municipalities, media, and the private sector.

- Upstream planning of transport systems can reduce the hazard exposure of the infrastructure that results in greater disaster risk. To utilize the life-cycle approach effectively, institutional and regulatory challenges, which are cross-cutting in nature, need to be mitigated. The life-cycle approach Figure 4 was applied to highlight how climate and disaster risk management can be integrated in the different phases of infrastructure life-span:

 - Systems planning: Shifting deployment of long-lived infrastructure away from disaster-prone areas to avoid development lock-in; consideration of integration and redundancy on critical infrastructure to offer alternatives.

 - Engineering and design: Using transport infrastructure both for connectivity and for DRM purposes, particularly from hydrometeorological-related hazards; use of innovative materials and design specifications that enhance robustness and flexibility of infrastructure.

 - Asset management: Inventory and mapping of transport infrastructure using open and interoperable technologies and improving institutional and financial arrangements for infrastructure maintenance; integration of climate and disaster risk considerations in the prioritization of investments in new infrastructure, rehabilitation, and restoration.

 - Contingency programming: Developing policy and institutional frameworks, communication protocols, and investments in emergency preparedness and response; alignment of transport systems and flows with local and regional evacuation, response, and recovery needs.

INSTITUTIONAL AND REGULATORY CAPACITY BUILDING

Disaster Resilient Infrastructure
Life Cycle Approach

SECTOR LEVEL
SYSTEMS PLANNING
ENGINEERING AND DESIGN
ASSET MANAGEMENT
CONTINGENCY PROGRAMMING
PROJECT LEVEL
INSTITUTIONAL AND REGULATORY CAPACITY BUILDING

FIGURE 3
Key Themes of the TKX
Source: Resilient Transport CoP

FIGURE 4
Disaster Resilient Infrastructure: Life Cycle Approach
Source: Resilient Transport CoP
Background on the Resilient Transport CoP

Transport damages and losses often make up a significant proportion of the economic impacts of disasters, frequently surpassing destruction to housing and agriculture in value terms. Damage is sustained not only by road surfaces or structures, but also by bridges, culverts, and other drainage works, while losses occur when breaks in transport links lead to reduced economic activity. Transport systems that are built well the first time—upholding structural and schematic standards and planning for safe failure—and that are well maintained are less likely to collapse when under pressure. With networks incurring damage less often, costs of rebuilding the same structures are reduced, and time and funding are made available for investment in more capable, adapted systems. If disaster strikes, a still-functioning transport system can also enhance the protection and revitalization of other sectors. Finally, planning and programming for contingencies ensures that when failures do occur, they can be addressed in a way that limits negative impacts.

With a growing transport and DRM agenda across the WB, the Resilient Transport CoP brings together members of the Climate Change Cross-Cutting Solutions Area (CCSA), GFDRR, Social Urban Rural & Resilience Global Practice (GPSURR), and Transport and ICT GP (T&I GP), with the objective of creating a knowledge-sharing environment for DRM and transport sector specialists. This COP has principally developed since September 2016, with the aim at establishing professional sharing practices among multidisciplinary staff that provides Task Teams with a suite of cross regional best practices and grant funding for technical assistance. By tackling DRM and transport in tandem—integrating the priorities and needs of both sectors—robust resilient transport systems can be established to reduce the risk of lost returns on investments and make strides toward long-term poverty reduction.

Japan’s Experience in Transport DRM

The government of Japan has a wealth of knowledge and experience in identifying and managing hazards that may adversely affect transport. In Japan, the challenges and lessons learned from large-scale disasters have been the driving force for continuously reviewing and enhancing the regulations, institutional frameworks, financing, staff capacity, and technology to advance resilience in transport. The TKX tapped into this experience by inviting speakers from Japan’s public sector, private sector, academia, and civil society to share their lessons learned in relation to each of the life-cycle phases.

Specifically, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) provided the overall institutional DRM framework for roads in Japan and introduced the Technical Emergency Control Force (TEC-FORCE) mechanism whereby the national government coordinates across regions to quickly deploy technical capacity for post-disaster recovery. In addition, Nippon Expressway Company Limited (NEXCO) presented an advanced and unique model for how private highway companies can manage and operate resilient roads, as well as the technology and capacities put in place to respond to disasters.
M ARIA Cordeiro and Marc Forni from the World Bank welcomed the participants on behalf of the Bank's Resilient Transport Community of Practice. The interest received for this event and the coming together of global practice units and client countries from around the world was a testament to the importance of and need to enhance the resilience of transport systems to the impacts of natural disasters and climate change.

Incorporating climate and disaster risk management into infrastructure investments is an important part of meeting the World Bank Group's commitments to address climate change. Given this context, the Technical Knowledge Exchange (TKX) set the following key objectives:

- Raise awareness of the importance of climate and natural disaster-resilient transport systems by exposing World Bank clients and teams to resilient transport concepts and best practices
- Foster learning, knowledge sharing, and collaboration among client countries on the topic of resilient transport
- Start documenting best practices being deployed by client countries, with the support of the World Bank, to facilitate replication and scaling-up of solutions
- Improve understanding of challenges faced by client countries to inform World Bank products and services in order to best serve and support client countries.

KEYNOTE 1: Disaster Risk Management of Roads in Japan
HITOSHI FUKUMOTO, senior deputy director, Road Bureau, Japan Ministry of Land, Infrastructure, Transport, and Tourism

Japan has developed its institutional and regulatory framework to define roles and responsibilities of governmental organizations for disaster risk management (DRM) as one of the world's most disaster-prone countries. FIGURE 5 Fukumoto provided a comprehensive explanation of how Japan has established a centralized DRM system by having strong coordination and communication at the national, prefectural, and municipal levels to ensure the consistency of DRM plans and its implementation approach. As a result, Japan has been able to mobilize people and resources effectively during any phase of the disaster management cycle (mitigation, preparedness, response, and recovery). His presentation emphasized the importance of continuously improving the technical capacity of those who engage in disaster response and recovery work through practical trainings. For example, Japan’s Technical Emergency Control Force (TEC-FORCE) is a group of trained experts who provide immediate support when local municipalities cannot manage the situation in the event of disaster.
SESSION 1: Introduction to Road Geohazard Risk Management

YUKA MAKINO, senior natural resources management and disaster risk management specialist, World Bank

The World Bank’s Road Geohazard Risk Management (GRM) Handbook urges traditional reactive approaches to improving transport network resilience to move toward a multidimensional geohazard risk management approach FIGURE 5, which incorporates people, the environment, hydrology, and geology as well as transportation infrastructure. This proactive methodology is threefold—working through the steps of evaluating hazards, monitoring networks, and managing infrastructure accordingly—and can result in 60–70 percent life-cycle cost savings.

Effective transport asset management must include the following elements: (a) geohazard risk evaluation from a landscape perspective; (b) hazard monitoring, early warning systems, structural measures, and emergency preparedness and response planning; and (c) institutional coordination and management.

Currently the GRM Handbook is being tested through technical assistance programs and the first release of the executive summary was distributed to Technical Knowledge Exchange (TXK) participants. The unabridged version of the document contains sample terms of reference, operations manuals, and guidance for cost-benefit analysis.

[It is] easy to get money when disaster happens but difficult to get funding for preventive actions.—Yuka Makino

FIGURE 5 Holistic Approach for Geohazard Risk Management

Source: Road Geohazard Risk Management Handbook.
SESSION 1: Introduction to Road Geohazard Risk Management

Frederico Ferreira Pedroso, DRM specialist, World Bank

Although Brazil faces significantly fewer natural hazards than many of the countries represented at the TKX, its transport infrastructure is extremely critical and highly vulnerable to disaster shocks. Approximately 25 percent of the Brazilian economy relies on the functioning of a pair of highways between the São Paulo metropolitan area and the Port of Santos, the busiest container port in the Latin American region. Therefore, any obstruction on that road can have a sizable impact on the entire country’s economy. Unfortunately, the country faces significant institutional challenges in mobilizing disaster resilience. The GRM Handbook encourages countries to establish standard operating procedures and recognize that DRM is not only the responsibility of federal or central governments, but also of state, local, and all other administrative bodies. The World Bank team is working in Brazil across federal, state, and municipal levels and is currently focused on addressing issues of poor communication to promote better sharing of data across government sectors.

Session 2: Understanding Risk and System Planning

Keiichi Tamura, chair, Technical Committee on Risk Management, World Road Association (PIARC)

Keiichi Tamura, chair, Technical Committee on Risk Management, World Road Association (PIARC)

Risks are defined and evaluated quantitatively and qualitatively. Based on the shared understanding of risks, Tamura suggested evaluating road geohazard risks more systematically by using a standardized risk index and rating. By using the example of risk assessment on the national highway (a 110-kilometer section) running through the Pacific coast area of Japan, Tamura emphasized the importance of quantifying road geohazard risks by using a risk index to identify treatment areas and specify risk mitigation methods. The proposed method of road DRM is to evaluate the risk of road facilities systematically and demonstrate the efficiency of the proposed method through a case study. The process involves the identification of natural disasters (hazards), damage assessment of road facilities, evaluation of direct and indirect damages, evaluation of consequences, evaluation of risks, and examination of the disaster prevention measures. FIGURE 7

FIGURE 7
Proposed Risk Management Process
Source: Adapted from Keiichi Tamura’s presentation.

Yoganath Adikari, DRM consultant, World Bank

In May 2014, an unprecedented rainfall resulted in massive flash flooding and landslides in Serbia. The transport sector took an enormous hit as bridges failed, roads were eroded, and thoroughways were flooded by river water. The government realizes that it needs to streamline DRM but doesn’t know where to start. Therefore, the World Bank team is applying the GRM Handbook to address the government’s unanswered questions. This effort includes making the case for increasing capacity, upgrading maintenance plans, and filling the data gap to improve the country’s 5- and 10-year DRM implementation plans.
DECISION MAKERS often have to make decisions that will have an impact for many years to come, without having access to full information or certainty. Rozenberg presented a road network model designed to help decision makers overcome this burden in two ways:

- Identify critical links in a transport network by using a new technology (available as a free phone app) called RoadLabPro to collect up-to-date data about the network and then systematically simulate disruptions to highlight the road disruptions that will lead to the highest increase in costs and time
- Prioritize robust interventions to improve the resilience of the transport network given that risks and their consequences are uncertain

Experience shows that relying too much on the past can be sometimes dangerous for future plans. —Julie Rozenberg

The tool urges decision makers to move from a "predict, then act" system to one that allows for iteration—that is, moving through phases of learning, acting, learning, revising, and then acting again based on new information. FIGURE 8 This model was applied to Mozambique and Peru, and findings from a series of scenario studies show that increasing maintenance always yields higher economic benefits, though they do not protect against the worst-case scenarios. The World Bank team recommends that the best option is to build redundancy only in the routes that draw the highest traffic and that it is always beneficial to invest in resilience.

RECENT RESEARCH commissioned by the New Zealand Transport Agency (NZTA) defines resilience as “the ability of systems (including infrastructure, government, business, and communities) to proactively resist, absorb, recover from, or adapt to disruption within a timeframe which is tolerable from a social, economic, cultural, and environmental perspective.” This definition is not restricted to natural hazards but takes a wide view of challenges to the system.

The tool developed for NZTA supports decision makers in the consideration of the consequences of unavailability of an asset in the context of social, cultural, environment, and economic impacts, as well as community tolerance to outage and willingness to pay.

FIGURE 9 Monique emphasized the importance of taking a wide view of resilience as it relates to a variety of stresses and shocks; of focusing on social, cultural, and environmental as well as economic value at stake; of allowing for a range of stakeholder perspectives in decision making, and of prioritizing outcomes and systems rather than assets.

It’s very important to place communities and their tolerance of risk at the heart of our decision making. —Monique Cornish

FIGURE 8 Proposed Decision Making Process Source: Adapted from Julie Rozenberg’s presentation.

FIGURE 9 Suggested New Approach to Consequence Source: Adapted from Monique Cornish’s presentation
Keynote 2:

Road Asset Management for Disaster Resilience

KIYOSHI KOBAYASHI, professor, Graduate School of Management, Kyoto University

Infrastructure is a driving force for development and is an invaluable asset in megacities. Kobayashi first defined the objective of road asset management as “to enhance the optimal allocation of the limited budget between the new arrangement of infrastructure and rehabilitation/maintenance of the existing infrastructure to maximize the value of the stock of infrastructure and to realize the maximum outcomes for the citizens.” Considering the challenges of asset management in LMICs—due to their poor quality of infrastructure, growing and diverse needs for infrastructure services, and vulnerabilities to disasters—Kobayashi reiterated the need for proper road inspections and asset data collection and management to prioritize road investment in a strategic manner.

His presentation focused on the collaboration of Kyoto University with Vietnam to improve the road asset management system over the past 12 years. By conducting a training course with Vietnamese universities and others to enhance the skills of the civil engineers, Kyoto University and the Japan International Cooperation Agency (JICA) helped Vietnam build its technical capacity to apply the “Kyoto Model” invented by Kyoto University. The Kyoto Model is a performance-based road asset management system that supports the decision making of PMS (pavement management systems) based on an actual investigation inspection, repair data, and performance to reduce the life-cycle cost of road pavement at the project level or network levels. Unlike previous models—including the Highway Design and Maintenance Standards Model (HDM) developed by the World Bank—the Kyoto Model requires minimal data and provides a standard platform corresponding to an international standard as well as a PMS that supports overall pavement asset management.

Finally, Kobayashi again emphasized the importance of maximizing the value of infrastructure for citizens by having optimal allocation of resources between investment for new construction and spending for the maintenance costs of existing facilities through a step-by-step evolution of the asset management system.

FIGURES 10 A–B

The Kyoto Model of Road Asset Management vs. Previous Models

Source: Adapted from Kiyoshi Kobayashi’s presentation.
SESSION 3: Road Asset Management and Mapping for Resilience

TAKEAKI SHONO, civil engineer, Land Development Department, Land Planning Division, Hyogo Prefecture

Most of Hyogo Prefecture’s infrastructure was built after the 1960s, and thus maintenance and renewal costs are expected to increase in coming years. To repair and renew aging infrastructure efficiently, maintenance plans based on a wide range of data and information are necessary. Hyogo Prefecture is using infrastructure data management systems to maintain infrastructure efficiently. Hyogo Prefecture manages a comprehensive infrastructure data platform by centralizing six key information systems: a facility ledger system, an asset management system, a geographic information management system, a requests-and-complaints management system, a photograph storage system, and a mobile system. Figure 11 This infrastructure data platform allows users to access data from anywhere (such as office and construction or inspection sites) remotely via internet. The photograph storage system, which enables users to share geographical location and photographs of disasters, can enhance the quick recovery of affected sites.

FIGURE 11

Hyogo Prefecture’s Infrastructure Data Management Systems
Source: Adapted from Takeaki Shono’s presentation.

THE NEW Zealand government has a policy, upheld across all sectors, that urges a focus on resilience planning, emergency response, and integration with business continuity planning. Resilience planning involves the mapping of hazard exposure—understanding road networks not only as linear systems of state highways and local roads but also about what they connect and enable.

Fairclough shared the Modeling the Economics of Resilient Infrastructure Tool (MERIT) that the New Zealand government is developing to understand the types of businesses that can be affected by different hazards and how those impacts can take shape. Figure 12

MERIT is an economic evaluation tool and may be used to assess the economic impacts associated with major infrastructure outages such as the GDP impacts. MERIT is a dynamic, multi-regional and multi-sectoral economic model that contains all of the core features of a computable general equilibrium (CGE) model. Finally, he recalled that adaptability is key; plans need to be easy to understand and easily readjusted.

We are guilty of plans that run into hundreds of pages. We need realistic implementation.
—Roger Fairclough

FIGURE 12

Modeling the Economics of Resilient Infrastructure Tool (MERIT)
Source: Adapted from Roger Fairclough’s presentation.
SESSION 4: Innovative Materials and Structures for Vulnerability Reduction

KENSUKE ICHIKAWA, manager, Disaster and Water Resources Management Division, Kokusai Kogyo Co. Ltd.

ETHIOPIA’S National Road Route 3 crosses through the Abay Gorge to connect the district towns of Dejen and Gohatsion. The winding 42-kilometer stretch of road drops and then climbs 1.2 kilometers along cliffs and steep slopes, presenting difficult geohazard conditions and demanding engineering challenges for road construction and maintenance. In fact, engineers found four critical landslides in the project area. From 2010 to 2012, JICA-supported work identified options to address these issues. *Focusing on surface drainage, earth removal, soil nailing, erosion prevention, and anchoring, the project showed the value of sharing and adapting techniques with local engineers and the need to continue to innovate and adapt economic selection of materials and more labor-intensive—rather than capital-intensive—approaches.**

FIGURE 13

Landslide Countermeasures

Source: Adapted from Kensuke Ichikawa’s presentation.

<table>
<thead>
<tr>
<th>Drainage tunnel</th>
<th>Anchors</th>
<th>Culvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope protection work</td>
<td>Ditch</td>
<td>Slip surface</td>
</tr>
<tr>
<td>Horizontal gravity drain work</td>
<td>Piles</td>
<td>Shaft piles</td>
</tr>
<tr>
<td>Piles</td>
<td>Shaft piles</td>
<td>Basecourse layer</td>
</tr>
<tr>
<td>Channel</td>
<td>Buttecr fill work</td>
<td>Basecourse layer</td>
</tr>
</tbody>
</table>

STEFAN HUSZAK, geotechnical engineer, New Zealand Climate Adaptation Platform, University of Auckland

HUSZAK SHARED the research conducted at the University of Auckland concerning the better understanding of the role that water ingress has to play on road asset failures. Water related failures is an issue that is being exacerbated through climate change, population increase, and urbanization. Conducted research includes deepening the understanding of water related failures, as well as exploring options to increase road asset resilience. In many cases, water is needed to build roads, but as soon as building is completed, water is seen as the enemy. Water can enter the system through infiltration through the surface (including being forced through by traffic), capillary rise (water rising from water table), and from the shoulder. Research aimed at understanding waterproofness of thin chipseals (sprayed seals), and moisture susceptibility of pavement materials. This research will provide better information from which to improve and optimize design processes of road assets. Options to increase resilience of roads include the use of positive drainage techniques, permeable pavements, Epoxy modified open graded porous asphalt (EMOGPA), and waterproof solutions for thin chipseals (sprayed seals). The challenge still exists of integrating this knowledge into widely used decision making processes to select options that increase resilience and reduce risk. **FIGURE 14**

FIGURE 13

Landslide Countermeasures

Source: Adapted from Kensuke Ichikawa’s presentation.

FIGURE 14

Surface and Pavement Waterproofing

Source: Adapted from Stefan Huszak’s presentation.

<table>
<thead>
<tr>
<th>Without Waterproofing</th>
<th>Waterproof Road Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeated traffic loading (~750kPa, ~0.002sec)</td>
<td>Repeated traffic loading (~750kPa, ~0.002sec)</td>
</tr>
<tr>
<td>Water entering seal defect</td>
<td>Water entering seal defect but prevent from entering basecourse</td>
</tr>
<tr>
<td>Flushing</td>
<td>Aggregate surface modifier</td>
</tr>
<tr>
<td>Water disbonding bitumen at chip interface</td>
<td>Waterproofing membrane Top 10-15mm of basecourse impregnated</td>
</tr>
<tr>
<td>Weakened, saturated basecourse</td>
<td>Basecourse layer intact</td>
</tr>
</tbody>
</table>

INTRODUCING OF JAPANESE TECHNIQUES AND ITS APPLICATION COUNTERMEASURES APPLICABLE IN ETHIOPIA
According to MLIT’s DRM protocol, when large-scale natural disasters occur, MLIT’s senior officials gather immediately at the Disaster Control Center to:

- Collect disaster-related data and information;
- Assess damage situations;
- Share critical disaster-related information with the prime minister’s office and other ministries (such as the Cabinet Office, which plays a general coordination role and provides disaster information to the public and mass media); and
- Determine contingency plans.

MLIT’s Technical Emergency Control Force (TEC-FORCE) is a group of trained technical experts dedicated to providing special support in case of emergency. Since its establishment in April 2008, more than 8,000 people from each organization of MLIT have been assigned to TEC-FORCE and have supported 69 disaster-affected areas. TEC-FORCE’s activity location and investigation results are shared through the Integrated Disaster Mapping System (DiMAPS), which integrates damage information such as roads, rivers, seismic intensity, and emergency routes. FIGURE 15 Finally, Tanaka shared MLIT’s efforts to prepare for a future Nankai Trough megathrust earthquake, which is expected to occur around the time of the 2020 Tokyo Olympics, and emphasized the importance of investing in preparedness.

Osamu Uemura, manager, disaster and risk management team, Nippon Expressway Company (NEXCO)

Uemura gave an overview of the duties of Japan’s Nippon Expressway Company (NEXCO), which include toll management, road maintenance and repairs, and inspection. The regional head office and traffic center collect private data from weather forecasting information services, meteorological agencies, and traffic patrol monitors to assess road and weather conditions. For NEXCO, information and institutional arrangements are the essential foundation of a well-operated expressway.

In our roles, who and when needs to do what is very well prescribed.—Osamu Uemura

In the event of a disaster, NEXCO prioritizes road clearance to restore the network within 20 hours for emergency vehicle passage. General use is permitted within 13 days after temporary restorations have been made, while full restorations are expected to take up to two years after an event. To conclude, Uemura shared strategies, such as NEXCO’s comb-like road-opening process and eight-directions strategy, which aims to reestablish the accessibility to Tokyo from eight directions within 48 hours after the earthquake by maintaining at least one route in each direction. FIGURE 16 These strategies facilitate the rapid response and recovery of transport systems and enable NEXCO to fulfill its mission of protecting society and responding to disaster-hit areas.
SESSION 6: Transport Infrastructure as Protection against Hydromet Events

STEFAN HUSZAK, geotechnical engineer, New Zealand Climate Adaptation Platform, University of Auckland

URBANIZATION removes a number of natural means to reduce flooding, and paved surfaces also cover significant urban areas that could be used to recharge the groundwater and reduce pressure on storm water. Although pavements traditionally are designed to keep water out, permeable pavements do the opposite and, as a result, they can effectively disseminate water to ground and avoid flooding. A trial of permeable pavement technology was constructed on Auckland’s North Shore (New Zealand); which was a success in its function, but a more expensive option when not including the value of other benefits such as environmental and flood risk reduction benefits. These benefits of DRM intervention need to be properly quantified and considered for a true value of the technology. Huszak highlighted that although various pavement and surface design options exist around the world, it is critical to consider the hydro-related hazards holistically as well as long-term infrastructure performance for the needs in specific locations. FIGURE 17 In addition, he reiterated that the benefits of resilience measures should not only be quantified in economic terms but should also include their environmental, social, and cultural aspects. The Mauri model was presented as a tool to quantify and account these benefits, and successfully shown to be of use on a case study of a road project in Samoa (funded by the World Bank).

KAZUSHIGE ENDO, deputy director general, Iwate Reconstruction Bureau, Reconstruction Agency

AFTER THE GREAT East Japan earthquake in 2011, the government established a Reconstruction Agency in 2012 to coordinate reconstruction policies and implement government assistance by promoting clear communication between the central government and local governments and other line ministries and agencies. Under Japan’s Cabinet Office, the Reconstruction Agency was positioned and ranked higher than other ministries and agencies. FIGURE 18 Within this institutional framework, the minister of the Reconstruction Agency is authorized to provide any support across different ministries and agencies and thus can comprehensively manage and expedite the reconstruction process. The budget for reconstruction measures and activities for the planned 10-year period (FY 2011 to FY 2020) was set at approximately US $320 billion, and the progress of recovery of key infrastructure such as transportation, schools, and hospitals was almost complete (as of November 2016).

Endo shared examples of the seawalls constructed in Rikuzentakata city in Iwate Prefecture and how the design of the seawalls is harmonized with the natural environment and recreational space such as parks and provides not only safety for the residents but also beautiful scenery. He also noted that roads can serve as seawalls in case of emergency by explaining how the East Sendai Expressway in Miyagi protected 230 people who evacuated to the roadway (height of embankment is 7–10 meters) during the 2011 Tohoku earthquakes by blocking the tsunami and debris from the Pacific Ocean.
SITE VISITS

Watarase Retarding Basin, Saitama Prefecture

The Watarase Retarding Basin (WRB) is a flood control basin that stores water for daily use and retains the river overflow temporarily to prevent flooding. The objective of the visit was to allow participants to understand both normal and extraordinary operations at river management offices, particularly before, during, and after expected major flood events. The site visit included a tour of the facilities and levee, which serve key functions in mitigating flood impacts to downstream metropolitan Tokyo. Participants also visited the roadside station, which was constructed on the super levee to provide amenities for road users and to serve as an evacuation center with storage for emergency goods.

The WRB was constructed as a flood control measure after the flood caused by Typhoon Catherine in 1947, which inflicted large damages to many areas of the flood-prone Kantō Plain. The Fujihatake area super levee was constructed from 1998 to 2000 on the western bank of the Yata River (a tributary of the largest tributary of the Tone River, called Watarase), where the vulnerability to extreme hydromet events is relatively high. In addition to its functions as a WRB levee, the Fujihatake area super levee also forms part of the levee road of Prefectural Road No 9. Participants drew key lessons on the integration of disaster risk management (DRM) into road transport infrastructure from the observation of super levees (much wider than ordinary levees and designed against floods and seismic events); roads in retarding basins; levee roads; and overflow levees, which are applicable for river crossing (as a road river-crossing structure) as a non-all weather service concept for low-volume roads.
EAST Nippon Expressway Company Limited (NEXCO East) is one of the three Nippon Expressway Companies owned by the government of Japan. NEXCO East is responsible for the construction and operation and maintenance of 3,870 kilometers of expressways with a daily traffic volume of 2.8 million vehicles; operation of terminals for trucks; and roadside business including parking lots and rest areas. The main disaster types on the expressway are mountainside slope failures, embankment collapses, flooding, and damage to bridges. The objective of the visit was to allow participants to understand the advanced intelligent traffic control (ITC) technology used for traffic control, including road disaster emergency management.

To prepare and respond to disasters, NEXCO’s Iwatsuki Traffic Control Center integrates observed hydrometeorological and seismic data and information as well as early warnings from the Japan Meteorological Agency. This information helps NEXCO organize an emergency task force and response measures at the affected segments of highways that it manages. The Control Center was upgraded in February 2016 with backup arrangements from other control centers to avoid disruption of services in the event of natural disasters. The participants learned about the Control Center’s disaster identification and response procedures, as follows:

- Monitoring and emergency response: The traffic control room monitors and integrates information about abnormal events (including natural disasters, objects on the road, disabled cars, and accidents); road conditions (such as traffic jams and road closures); and weather conditions to provide emergency information to traffic users in coordination with the Regional Police Bureau’s Expressway Management Office, fire departments, Ministry of Land, Infrastructure, Transport and Tourism (MLIT), and local governments. At the time of an abnormal event, the traffic control room provides instructions to the NEXCO’s Traffic Management Patrol Squad on-site to implement appropriate emergency response measures. The patrol squad sends video feeds to the traffic control room for further instructions.

- Asset management: The facility control room collects and analyzes the data and information about tunnels and bridges to develop and implement a maintenance and rehabilitation plan. It also monitors and controls the operations of various facilities on roads and tunnels using remote supervision control facilities that are available 24 hours a day. In case of fire in the long tunnels, control room personnel swiftly guide the road users for evacuation and operate emergency facilities in the tunnels.
SUMMARY OF ACTION PLANNING DISCUSSIONS

PARTICIPATING countries engaged in peer-to-peer learning and formulated takeaways from the Technical Knowledge Exchange (TKX) for potential application to their country contexts. In the action planning discussions summarized below, by country, the participants discussed the range of challenges they face—institutional, legal, financial, technological, communication, structural, and nonstructural.

Afghanistan

Overall transport and disaster risk management (DRM) institutional mapping: The Ministry of Transportation designs, constructs, maintains, and prepares geohazard mapping. The Ministry of Economy acts as a DRM coordinator through the working committee.

Client-identified challenges: Key challenges include the move toward preparedness from the current status of focusing mainly on post disaster response, lack of financial resources, technical capacity, and effective institutional arrangement.

Implementation plan: (1) Conduct capacity building exercise; (2) conduct comprehensive functional analysis of existing systems; and (3) map geohazard risks of a network of selected routes.

Argentina

Overall transport and DRM institutional mapping: The Ministry of Transport is a specialized agency on national roads and national railways. The Ministry of Security provides post disaster response.

Client-identified challenges: Geohazard risks and their impacts are not analyzed on a systematic basis. Owing to the lack of institutional and functional links between transport and DRM, Argentina has no institutionalized risk assessment process.

Implementation plan: (1) Review locally applicable design and construction standards; (2) develop vulnerability assessment guide and database; (3) draft a prioritized plan of locations to be measured on the sample network and a quantified assessment of net benefits; and (4) draft recommendations on design and maintenance protocols with additional climatic data.

Brazil

Overall transport and DRM institutional mapping: Civil defense under the Ministry of Integration has the mandate to provide emergency assistances to people and assets affected by natural disasters. However, it is not linked to the Ministry of Transport and National Road Department for risk identification and assessment.

Client-identified challenges: In the past five years, four major disaster events cost a total of US$7.5 billion, US$5.5 billion of which were direct damages while the other US$2 billion were related losses. In addition to the lack of clarity in responsibility of each institution related to DRM, there is need to enhance DRM data integration and establish risk evaluation methodology.

Implementation plan: (1) Establish the missions, targets, and responsibilities of all related institutions on all phases of DRM in the short and long term; (2) define the approach for the assessment of vulnerability and risk; and
Summary of Action Planning Discussions

Cambodia

Overall transport and DRM institutional mapping: The National Committee for Disaster Management, the country’s lead government authority for disaster management and response, has been established. Responsible institutions are designated for transport and DRM at the national and rural levels.

Client-identified challenges: Flooding has been the biggest problem with over the past 50 years, with destructive flooding occurring approximately every five years. There are also flash floods. Most roads are unpaved and vulnerable to disaster risks, particularly with limited maintenance. While hazard maps have been created based on simple and limited hydrometeorological data, upgrading disaster risk identification and assessment is needed.

Implementation plan: (1) Learn more about the matrix system risk identification and measurement; (2) initiate dialogue with the competent bodies around DRM, including community participation; and (3) increase human capabilities and financial resources to implement road asset management with proper design for disaster risks.

Colombia

Overall transport and DRM institutional mapping: Transport and DRM are under different agencies and ministries.

Client-identified challenges: Landslides and rockfalls are the most common and frequent threats. While Colombia implements an identification and assessment process applying multicriteria analysis for vulnerability determination, preparation of strategic action plans and inclusion of geohazard intervention in current asset management systems is required.

Implementation plan: (1) Finalize geohazard vulnerability assessment; (2) prepare a prioritized work program; (3) update the road asset management process and design standards; and (4) prepare clear guidelines for emergency response.

Georgia

Overall transport and DRM institutional mapping: Transport and DRM are under different agencies and ministries.

Client-identified challenges: Landslides and rockfalls are the most common and frequent threats. While Georgia implements an identification and assessment process applying multicriteria analysis for vulnerability determination, preparation of strategic action plans and inclusion of geohazard intervention in current asset management systems is required.

Implementation plan: (1) Finalize geohazard vulnerability assessment; (2) prepare a prioritized work program; (3) update the road asset management process and design standards; and (4) prepare clear guidelines for emergency response.

India

Overall transport and DRM institutional mapping: A National Disaster Management Act and Policy, as well as national, state, and district disaster management plans are prepared. State governments lead the process of risk identification by developing satellite imagery and advanced forecasting systems.

Client-identified challenges: India has been focusing on how to integrate disaster and climate resilience through the life cycle of infrastructure by improving knowledge and awareness through modern information technology (IT)-based tools, optimizing network designs and increasing green cover, and improving asset management programs.

Implementation plan: (1) Prepare climate resilience strategy for rural roads; (2) conduct vulnerability mapping of core transport networks; and (3) seek climatically optimized roads and bridges.

Kyrgyz Republic

Overall transport and DRM institutional mapping: The Ministry of Transportation designs, constructs, maintains, and prepares geohazard mapping. The Ministry of Economy acts as a DRM coordinator through the working committee.

Client-identified challenges: Although avalanches occur yearly and the Ministry of Transportation allocates a budget for repairs and response every year, the funds are not sufficient. It is necessary to strengthen preparedness by setting up financial resources, develop technical capacity with dedicated technical units based on effective institutional arrangement, and create sustainable early warning systems.

Implementation plan: (1) Conduct functional analysis of existing systems; (2) map geohazard risk of a selected network of routes; and (3) prepare clear guidelines for emergency response.

Mozambique

Overall transport and DRM institutional mapping: Institutions responsible for both transport and DRM are the Ministry of Public Works, Housing and Water Resources; the Ministry of Transport and Communications; the Ministry of Local Government; and the Ministry of Economy and Finance. Engineering and design for the road are managed by the National Road Administration (ANE) and Road Fund (RF). Asset management or risk management are conducted by the ANE, RF, local governments, and municipalities.

Client-identified challenges: Key challenges include the need for a long-term strategic plan integrating land use planning, coordination between sectors to implement a National Green Growth Strategy, and incorporation of the road disaster management into sector development plans and operationalization of resilient road asset management.

Implementation plan: (1) Improve climate resilient road asset management, road design standards and specifications, and technical guidelines to enhance the road network; (2) improve quality of and access to hazard inventory and hydrometeorology data for road design, planning and monitoring; and (3) mainstream National Green Growth Strategy into five-year sector plan and sector strategy.

Lao People’s Democratic Republic

Overall transport and DRM institutional mapping: The Ministry of Public Works, while provincial level is responsible for risk identification, planning, and implementation of local roads.

Client-identified challenges: Key challenges include the need for a long-term strategic plan integrating land use planning, coordination between sectors to implement a National Green Growth Strategy, and incorporation of the road disaster management into sector development plans and operationalization of resilient road asset management.

Implementation plan: (1) Implement pilot projects throughout the country; (2) mainstream climate resilience issues into the country strategies; (3) set up a tool for country
Myanmar

Overall transport and DRM institutional mapping: In post disaster response, institutional coordination is standard practice between the road sector, the National Disaster Management Committee (NDMC), and national ministries. In the predisaster phase, there is no coordination yet between the national DRM agency and the transport agency.

Client-identified challenges: Myanmar faces cyclone, flooding, and landslide challenges that have damaged roads throughout the country. At present, projects are geared toward improving technical specifications for design and repair of these assets. Risk evaluation methods are not systematic, and hazard maps are not available.

Implementation plan: (1) Improve road inventory and asset management by moving to a digitized system including hazard maps, photos, a geographic information system (GIS), complaint management, and a mobile system; (2) strengthen road maintenance for disasters through guideline updates, training, and community awareness and participation; and (3) develop a contingency or DRM plan for the road sector.

Philippines

Overall transport and DRM institutional mapping: The Department of the Interior and Local Government is the agency that supervises local government units (LGUs). The Department of Public Works and Highways provides design standards and criteria. The Department of Transportation ensures the protection of transport infrastructure. The National Economic and Development Authority supports LGUs regarding transport planning and recovery.

Client-identified challenges: Local roads are mostly unpaved and exhibit low resilience to hazard impacts, becoming unusable during a hazard event. Although institutions are in place to monitor, deliver early warnings, and implement asset management, these tasks are not integrated and considered as a system.

Implementation plan: (1) Establishment of a web-based local roads and bridges inventory system; (2) Mainstream the use of local road network as part of resilience efforts through the establishment of an Information Driven Local Disaster Risk Governance Program; and (3) Assess the vulnerability of local infrastructure by conducting a rapid assessment of all vital/core local roads and bridges. (The infrastructure assessment tool for roads and bridges has been developed in partnership with the World Bank since 2011. This is the tool that is currently being provided for the LGUs in the conduct of their infrastructure audit).

Serbia

Overall transport and DRM institutional mapping: Institutions responsible for the transport functions are the Ministry of Transport and the Public Enterprise Roads of Serbia (PERS). The institution responsible for DRM is the Sector for Emergency Situations (Ministry of Interior), whereas the recovery and reconstruction is managed by the Public Investment Management Office.

Client-identified challenges: Extreme rainfall in May 2014 affected 1.6 million people (22 percent of the total population) and created a strain on the mining and energy, housing, agriculture, and trade sectors. Key challenges are mainstreaming of climate resilience into road transport management; understanding of transport risk and vulnerabilities; and improving the resilience of infrastructure.

Implementation plan: (1) Create national vulnerability assessment and emergency response plan; (2) formulate a flood risk assessment methodology for vulnerability assessment of roads; and (3) establish a data exchange platform and a construction code considering climate change effects.

Sri Lanka

Overall transport and DRM institutional mapping: The road management authorities include ministries and road development authorities (at the national and provincial levels) and municipalities (for local roads). The Ministry of Irrigation is included for road-related water management issues. Institutions responsible for DRM are the Ministry of Disaster Management, which has overall responsibility and coordination of ministries; the Road Development Authority; and the National Building Research Organization for landslide monitoring.

Client-identified challenges: Since risk assessment is not included in the central asset management system, particularly for pavement and bridges, DRM data need to be integrated at the strategic asset planning level. Although some DRM systems are in place (especially in coastal areas), it is hard to sustain some initiatives owing to lack of financial and technical capacities.

Implementation plan: (1) Improve the existing emergency response system; (2) integrate climate resilience and DRM in the master plan; and (3) integrate climate and disaster risks in the asset management process for pavement and bridges.

Tajikistan

Overall transport and DRM institutional mapping: The Ministry of Transportation and its departments are responsible for policy-making in transport sector, asset management, preservation and maintenance of roads. MoT’s Design Institute is preparing designs. Government’s Committee on Emergency Situations is responsible for emergency situations. To coordinate DRM efforts, the government has appointed the Ministry of Economy acts as a DRM coordinator of the Working Committee.

Client-identified challenges: Tajikistan faces a series of institutional challenges, including insufficient funding for both preventive and rescue-and-recovery operations, general trend of focusing on post-disaster rather than preparedness; absence of a natural disaster risk assessment, mapping and database; lack of early warning systems.

Implementation plan: (1) Conduct knowledge workshop and capacity building exercise; (2) assess functional analysis of existing systems in relation to DRM and resilience of transport infrastructure; and (3) conduct geohazard risk mapping for a network of selected routes for shorter-term and climate change vulnerability assessment for longer term.

Vietnam

Overall transport and DRM institutional mapping: The institutions responsible for transport are the Ministry of Transportation (MoT) and its agencies. DRM responsibilities lie with a National Committee on Preparedness and Response to Natural Hazards (NCPRNH), chaired by the prime minister. MoT is a member of NCPRNH, under the assignment of the premier. The MoT has responsibility for preparing and responding to natural hazards in the transport sector.

Client-identified challenges: Sea level is rising along Vietnam’s coasts at an approximate rate of 2.8 millimeters per year, while average annual temperatures have increased by about 0.62 Celsius degree (between 1958 – 2014). The number of strong storms tends to increase and heavy rainfall has been intensified in the Central South - West, South – West and North - West regions. Technical support is needed for partitioning an online database and establishing a system to monitor landslide risks along the national roads in the mountainous Northern provinces.

Implementation plan: (1) Enhance geospatial road asset management, landslide mapping, and monitoring system for the road network; (2) establish natural hazard monitoring; (3) create forecasting and early warning systems; and (4) establish task forces and management systems to respond to disasters.
The TKX showed how the Resilient Transport CoP encouraged the creation of partnerships at the country level and emphasized that people are at the center of the World Bank Group’s Resilient Transport efforts moving forward. One of tangible engagements emerged through this TKX is the launch of a regional approach, “high mountainous countries initiative,” proposed by three countries in Central Asia – Afghanistan, Kyrgyzstan, and Tajikistan – aiming at the creation of resilient transport system based on their numerous similarities in the geography, topography, type and occurrence of disasters, and economic situation. This initiative was agreed among three delegations during the TKX and then idea was presented by the Minister of Transport and Roads of the Kyrgyz Republic, Mr. Kalilov. While countries have diverse starting points, values, and approaches, the CoP reiterated the importance of developing a flexible suite of engagements that can be applied in a modular way.

This Resilient Transport CoP continues to consolidate and scale-up efforts to build climate and disaster resilient transport systems. The program grounds future, relevant World Bank Group projects to the appropriate sectors by establishing a base set of tools, solutions, and priorities on which to build. The CoP will host follow-up events, publish blog posts, create knowledge products, and hold meetings. Ultimately the CoP’s goal is to help task team leaders support country officials who make key decisions on transport and encourage them to build more resilient countries.

CONCLUSION

FIGURE 20
Knowledge Sharing Offered to Other Countries
Source: Resilient Transport CoP
Day 1: Monday, May 8

Objectives of Day 1
- Set out the objectives, concept, definition, and framework of resilient transportation
- Introduce client profiles and development challenges and set out what we are trying to achieve
- Launch the Road Geohazard Risk Management Handbook
- Deepen understanding of risk and system planning
- Introduce and explore road asset management and resilience mapping

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 am – 9 am</td>
<td>Registration and Breakfast</td>
<td></td>
</tr>
</tbody>
</table>
| 9 am | Welcome and Opening Remarks (10 minutes) | Mr. Marc Forni, lead DRM specialist, World Bank
Ms. Maria Cordeiro, senior transport specialist, World Bank |
| 9 am | Learning Objectives and Client Profiles (10 minutes) | Mr. James (Jay) Newman, DRM specialist, DRM Hub, Tokyo (GFDRR)
Ms. Naho Shibuya, DRM specialist, DRM Hub, Tokyo (GFDRR)
Ms. Shoko Takemoto, DRM specialist, DRM Hub, Tokyo (GFDRR) |
| 9:45 am | Q&A (10 minutes) | |
| 9:45 am | Session 1: Opening and Launch of Road Geohazard Risk Management Handbook | |
| 10:30 am | Coffee Break | |
| 10:45 am | Session 2: Understanding Risk and System Planning | |
| | Lightning Talks from international experts (45 minutes) | Dr. Keiichi Tamura, chair, Technical Committee on Disaster Management, World Road Association (PIARC): “Quantitative Evaluation of Road Disaster Risks”
Ms. Monique Cornish, NZ Climate Adaptation Platform and Tonkin & Taylor: “Building the Business Case for Resilience”
Ms. Julie Rozenberg, economist, World Bank |
<p>| | Q&A (15 minutes) | |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:45 am</td>
<td>Client Country Presentations (20 minutes)</td>
</tr>
<tr>
<td></td>
<td>Mozambique, Brazil, Georgia</td>
</tr>
<tr>
<td></td>
<td>Q&A, exchange of views in small group discussions (10 minutes)</td>
</tr>
<tr>
<td></td>
<td>Participants</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>Lunch</td>
</tr>
<tr>
<td>1:00 pm</td>
<td>Session 3: Road Asset Management and Mapping for Resilience</td>
</tr>
<tr>
<td></td>
<td>Introduction to Road Asset Management for Disaster Resilience</td>
</tr>
<tr>
<td></td>
<td>Keynote presentation (20 minutes)</td>
</tr>
<tr>
<td></td>
<td>Director and Professor Kiyoshi Kobayashi, Graduate School of Management, Kyoto University: “An Overview of ISO55000 on Asset Management, Japan’s Bottom-Up Approach, and Key Elements for Developing Countries”</td>
</tr>
<tr>
<td></td>
<td>Q&A (10 minutes)</td>
</tr>
<tr>
<td>1:30 pm</td>
<td>Case Studies on Technology and Institutional/Financing</td>
</tr>
<tr>
<td></td>
<td>Lightning Talks from international experts (30 minutes)</td>
</tr>
<tr>
<td></td>
<td>Mr. Takasaki Shomo, Hyogo Prefecture, Land Development Department, Land Planning Division</td>
</tr>
<tr>
<td></td>
<td>Mr. Roger Fairclough, NZ Climate Adaptation Platform and Neo Leaf Global: “Road Operators’ Approach to Resilience Improvement”</td>
</tr>
<tr>
<td></td>
<td>Q&A (10 minutes)</td>
</tr>
<tr>
<td>2:10 pm</td>
<td>Client Country Presentations (30 minutes)</td>
</tr>
<tr>
<td></td>
<td>India, Kyrgyz Republic, Cambodia, Lao PDR</td>
</tr>
<tr>
<td>2:40 pm</td>
<td>Feedback and Comments from Expert Panel</td>
</tr>
<tr>
<td></td>
<td>Prof. Kobayashi, Mr. Fairclough, and World Bank team (10 minutes)</td>
</tr>
<tr>
<td>2:50 pm</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>3:10 pm</td>
<td>Action Planning (small groups)</td>
</tr>
<tr>
<td></td>
<td>Mr. James (Jay) Newman, DRM specialist, DRM Hub, Tokyo (GFDRR): “Introduction to Action Planning” (15 minutes)</td>
</tr>
<tr>
<td></td>
<td>Challenge Questions and Action Planning (WB and client teams) (60 minutes)</td>
</tr>
<tr>
<td></td>
<td>Report Back</td>
</tr>
<tr>
<td></td>
<td>Small group reporting: representative from each group presents key points (40 minutes)</td>
</tr>
<tr>
<td>4:30 pm</td>
<td>Feedback and Comments from Expert Panel</td>
</tr>
<tr>
<td></td>
<td>Prof. Kobayashi, Mr. Fairclough, and World Bank team (15 minutes)</td>
</tr>
<tr>
<td>5:25 pm</td>
<td>Wrap-up</td>
</tr>
<tr>
<td></td>
<td>Wrap-up of Day 1 and Overview of Day 2 (5 minutes)</td>
</tr>
<tr>
<td></td>
<td>World Bank team</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>Welcome Reception with Japan Bosai Platform</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>9:00 am</td>
<td>Recap of Day 1 and Overview of Day 2 (5 minutes)</td>
</tr>
<tr>
<td>9:05 am</td>
<td>Session 4: Innovative Materials and Structures for Vulnerability Reduction</td>
</tr>
<tr>
<td></td>
<td>Innovative Materials and Structures for Vulnerability Reduction</td>
</tr>
<tr>
<td></td>
<td>Lightning Talks from international experts (45 minutes)</td>
</tr>
<tr>
<td></td>
<td>Mr. Kensuke Ichikawa, manager, Disaster and Water Resources Management Division, Kokusai Kogyo Co., Ltd.</td>
</tr>
<tr>
<td></td>
<td>Mr. Stefan Huszak, NZ Climate Adaptation Platform and University of Auckland: “Understanding Resilience of Natural Aggregate Properties; Epoxy Porous Asphalt; Coastal Roads and Rising Seawater Levels”</td>
</tr>
<tr>
<td></td>
<td>Q&A (15 minutes)</td>
</tr>
<tr>
<td>10:00 am</td>
<td>Client Country Presentations (30 minutes)</td>
</tr>
<tr>
<td></td>
<td>Colombia, Sri Lanka, India, Vietnam</td>
</tr>
<tr>
<td></td>
<td>Q&A, exchange of views in small group discussions (15 minutes)</td>
</tr>
<tr>
<td></td>
<td>Participants</td>
</tr>
<tr>
<td>11:00 am</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:30 am</td>
<td>Session 5: Emergency Management Response and Contingency Planning</td>
</tr>
<tr>
<td></td>
<td>Emergency Management Response and Contingency Planning</td>
</tr>
<tr>
<td></td>
<td>Lightning Talks from international experts (30 minutes)</td>
</tr>
<tr>
<td></td>
<td>Mr. Katsunao Tanaka, Disaster Risk Management Division, Water and Disaster Management Bureau, Ministry of Land, Infrastructure, Transportation and Tourism (MLIT), Japan: Presentation on TEC-FORCE</td>
</tr>
<tr>
<td></td>
<td>Mr. Osamu Uemura, Nippon Expressway Company (NEXCO): Presentation on Disaster Management</td>
</tr>
<tr>
<td></td>
<td>Q&A (15 minutes)</td>
</tr>
<tr>
<td>12:30 pm</td>
<td>Client Country Presentations (20 minutes)</td>
</tr>
<tr>
<td></td>
<td>Afghanistan, Argentina, Tajikistan</td>
</tr>
<tr>
<td></td>
<td>Q&A, exchange of views in small group discussions (10 minutes)</td>
</tr>
<tr>
<td></td>
<td>Participants</td>
</tr>
<tr>
<td>1:00 pm</td>
<td>Lunch</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>Client Country Presentations (20 minutes)</td>
</tr>
<tr>
<td></td>
<td>Philippines, Myanmar, Serbia</td>
</tr>
<tr>
<td></td>
<td>Q&A, exchange of views in small group discussions (10 minutes)</td>
</tr>
<tr>
<td></td>
<td>Participants</td>
</tr>
<tr>
<td>2:30 pm</td>
<td>Session 6: Transport Infrastructure as Protection against Hydromet Events</td>
</tr>
<tr>
<td></td>
<td>Transport Infrastructure as Protection against Hydromet Events</td>
</tr>
<tr>
<td></td>
<td>Lightning Talks from international experts (15 minutes)</td>
</tr>
<tr>
<td></td>
<td>Mr. Stefan Huszak, NZ Climate Adaptation Platform and University of Auckland: “Vulnerability Aspects of Coastal Infrastructure (Erosion and Storm Events), Resilience Options, Coastal Protection, Protection against Storm Events, Infrastructure that Has to Come with Sea Level Rise”</td>
</tr>
<tr>
<td></td>
<td>Q&A (10 minutes)</td>
</tr>
<tr>
<td>3:00 pm</td>
<td>Coffee Break</td>
</tr>
</tbody>
</table>
3:30 pm | Engagement and Action Planning
Small group discussion and action planning (30 minutes)
Small group reporting: representative from each group presents key points (15 minutes)
Interactive session and feedback on learning needs from each country (15 minutes)
World Bank team

5:00 pm | Wrap-up
Wrap-up of Day 2 and overview of Day 3 (5 minutes)

DAY 3: WEDNESDAY, MAY 10

OBJECTIVES OF DAY 3
Learn about how to utilize transport infrastructure for DRM measures against hydromet events
Expand network of transport sector DRM stakeholders in Japan

9:00 am | Recap of Day 2 and Overview of Day 3 (5 minutes)

9:05 am | Session 6: Transport Infrastructure as Protection against Hydromet Events (contd)
Transport Infrastructure as Protection against Hydromet Events

10:00 am | Lightning Talks from international experts (15 minutes)
Mr. Kazushige Endo, Iwate Reconstruction Bureau, Reconstruction Agency
Q&A (10 minutes)
Depart from Tokyo to Kako City, Saitama Prefecture (bus)
Lunch in the bus and one break at highway service area

12:30 pm | Field Visit 1: Watarase Retarding Basin and Levee Roads
Wetland Information Center
The Watarase Retarding Basin (WRB) is located in the center of Kanto plains and constructed to store water for daily consumption and to temporarily retain the river overflow to prevent flooding in the river basin. The area is highly prone to floods and the facility serves as a key function for mitigating impacts of floods to the downstream metropolitan Tokyo. The levee road (Prefectural Road No.9) surrounds the WRB, and the stability of the road embankment has been enhanced as Super Levee against floods and seismic risk. At the WRB Wetland Information Center, an overview of WRB and the role of Super Levee / Prefecture Road during the past typhoon events will be explained.

1:15 pm | Depart from WRB Wetland Information Center to Fujihatake Area Super Levee

1:35 pm | Fujihatake Area Super Levee
The Fujihatake Area Super Levee is located on the western bank of Watarase River, the largest tributary of Tone River. The Super Levee is much wider than ordinary levees and designed against floods and seismic events. The Super Levee was constructed from 1998 to 2000, including the Prefectural Road No.9 that runs on top of the Super Levee. In 2004, a Roadside Station and a Sports Leisure Education Center were also opened as part of the Super Levee. These facilities have multiple functions including commercial, leisure, as well as emergency response by serving as storage facilities for emergency goods.

2:20 pm | Depart from Kitakawabe Roadside station to NEXCO’s East Kanto Traffic Control Center

3:30 pm | Field Visit 2: Visit to NEXCO’s Kanto Traffic Control Center, Saitama City

5:00 pm | 6:00 pm

DAY 4: THURSDAY, MAY 11

OBJECTIVES OF DAY 4
Review and reflect on key lessons learned and explore how to operationalize them into country-specific actions

9:00 am | Recap of Day 3 and Overview of Day 4 (5 minutes)

9:05 am | Stocktaking and Multistakeholder Dialogue (30 minutes)
Bringing it Home
How to Operationalize Key Takeaways (30 minutes)

10:00 am | Country-Specific Action Plan Development (60 minutes)
Small group discussions by clients and task team leaders

11:00 am | Coffee Break

11:30 am | Action Plan Pitch Session 1 (90 minutes)
5 minute presentation + 5 minute Q&A per client
Panelists:
Dr. Mikio Ishiwatari, senior adviser, Japan International Cooperation Agency (JICA)
Mr. Marc Forni, lead DRM specialist, World Bank
Ms. Maria Cordeiro, senior transport specialist, World Bank
Mr. Juan Gaviria, practice manager, Transport for Europe and Central Asia, World Bank
Moderated by DRM Hub

1:00 pm | Lunch

2:00 pm | Action Plan Pitch Session 2 (90 minutes)
5 minute presentation + 5 minute Q&A per client
Panelists:
Dr. Mikio Ishiwatari, senior adviser, Japan International Cooperation Agency (JICA)
Dr. Yuka Makino, senior natural resources management and DRM specialist, World Bank
Ms. Julie Rozenberg, economist, Sustainable Development Group, World Bank
Ms. Fiona Collin, lead transport specialist, World Bank
Moderated by DRM Hub

3:30 pm | Coffee Break
DAY 5: FRIDAY, MAY 12

OBJECTIVES OF DAY 5
Develop strategy for Resilient Transport Community of Practice (CoP)
All Day World Bank teams

3:45 pm Conclusion and Wrap-up (20min)
Closing Remarks (10 min)

5:00 pm Farewell Dinner

ANNEX 2: EXPERT PROFILES

Marc S. Forni
Lead DRM Specialist | GSURR, World Bank

Marc Forni joined the World Bank in 2003, working for four years in the Latin America and the Caribbean region to help build the disaster risk management practice. He returned to the World Bank in 2011, after a period as an investment banker, to support the expansion of the disaster risk management practice in South Asia, where he leads the World Bank’s investments in resilience in Bangladesh and Sri Lanka, as well as housing reconstruction in Nepal following the 2015 earthquake.

Maria Cordeiro
Senior Transport Specialist | Transport and ICT, World Bank

Maria Cordeiro contributes to the Green Transport Community of Practice as a focal point on greenhouse gas accounting and climate risk screening for the transport sector, supporting agencies to climate finance, and in the preparation of knowledge products on resilient and low-carbon transport. Maria has 20 years of international work experience in the fields of climate change, air quality, environment management, and sustainable mobility. Prior to joining the World Bank, Maria was a section manager at the Environment Agency, Abu Dhabi, United Arab Emirates. As part of the Policy and Planning team, Maria supported the development of Abu Dhabi’s air quality and climate change strategies, Surface Transportation Master Plan, Low Emission Vehicle Strategy, and vehicle fuel economy standards, among other policies. Maria also worked at the Inter-American Development Bank, the World Resources Institute, and other international institutions where she helped shape low-carbon investment portfolios in the transportation sector and contributed to flagship events and publications like Transforming Transportation and United Nations Environment Programme’s (UNEP) Global Environment Outlook – West Asia Regional Report. A Portuguese national, Maria holds a Global MBA from IE Business School, a master’s degree in integrated environment control from Nottingham Trent University, and a bachelor’s degree in energy and environmental technology from the University of Glamorgan, U.K.

James P. Newman (Jay)
DRM Specialist | DRM Hub, Tokyo, GFDRR, World Bank

Jay Newman is a DRM specialist at the World Bank DRM Hub, Tokyo, where he leads the Hub’s Knowledge Program, as well as its engagements on resilience. Since joining the World Bank in 2013, Jay has worked at the Global Facility for Disaster Reduction and Recovery (GFDRR), serving as a focal point for urban resilience and regional portfolios in South Asia and East Asia Pacific. He contributed to the development of the CityStrength Diagnostic, and has supported World Bank projects and technical assistance in India, Nepal, South Africa, and Vietnam. Prior to joining the GFDRR, he worked for the City of Baltimore, contributing to the city’s 10 Year Financial Plan and CitiStat performance management program, also serving as acting deputy procurement agent. As an adjunct professor at University of Baltimore’s Master’s in Public Administration, he has taught courses on statistics, urban management, and public policy. Jay holds a master’s degree in applied economics and public policy jointly from Georgetown University and Universidad Alberto Hurtado in Santiago, Chile, as well as a bachelor’s degree in economics and Spanish from Washington University in St. Louis.

Naho Shibuya
DRM Specialist | DRM Hub, Tokyo, GFDRR, World Bank

Naho Shibuya works on bridging global and Japanese knowledge and expertise with the World Bank’s operations to help mainstream DRM in low- and middle-income countries. She currently implements a knowledge program on resilient infrastructure by leveraging her experience in infrastructure development including public-private partnerships (PPPs) and water supply and sanitation, transport, energy, and urban planning. As a Chartered Water and Environmental Manager and a Chartered Environmentalist, Naho provided advisory service to multilateral and bilateral development banks, commercial lenders, investors, civil contractors, and manufacturers in the Asia Pacific region prior to joining the World Bank. She holds a graduate degree from Arizona State University and a master’s degree in sustainability science from the University of Tokyo.

Shoko Takemoto
DRM Specialist | DRM Hub, Tokyo, GFDRR, World Bank

Shoko Takemoto is a DRM specialist based in the DRM Hub, Tokyo. Prior to joining the DRM Hub, she spent more than five years working alongside national governments, communities, and donors in the Pacific and West Africa on climate- and disaster-resilient development through her appointment with the United Nations Development Programme. Her areas of specialization include environmental policy and planning, climate change adaptation, disaster resilient design, and integrated water resource management. She holds a master’s degree in city planning from the Massachusetts Institute of Technology.
Yuka Makino has an undergraduate degree (JICA) expert on community-based International Cooperation Agency Asia, and Africa and has held field experience in East Asia, South adaptation. She has extensive DRM, and climate change in managing and developing Yuka Makino has more than 23 years of professional experience at Gasco, a master’s degree in transportation in Brasilia and as an assistant professor at the University of Canterburry in New Zealand. He holds a bachelor’s degree in civil engineering from the Pontificia Universidad de Colegio de Sucre and a master’s degree in transportation from the University of Brasilia, a doctorate in civil engineering (transport- and DRM-focused) from the University of Canterburry, and a postdoctorate in urban logistics and humanitarian logistics from Kyoto University in Japan.

Yoganath Adhikari is a Japanese national who has worked for the World Bank as an international consultant since 2016. Yoganath practices in the fields of infrastructure and climate change. He has more than 17 years of experience in the field of disaster reduction and recovery in low- and middle-income countries while working for the Food and Agriculture Organization of the UN, Nippon Koei, the International Centre for Water Hazard and Risk Management (ICRARM), and the Forestry and Forest Products Research Institute of Japan.

Keichi Tamura is chair of the Technical Committee on Disaster Management, World Road Association (PIARC), and an adjunct professor at the Graduate School of Management, Kyoto University, specializing in earthquake engineering and infrastructure management. He has more than 30 years of both professional and research experience. Previously, he has conducted projects on the ground of Head of the Department of Structural Engineering, Research Coordinator for Earthquake Engineering, and director of the Center for Advanced Engineering Structural Assessment and Research at the Precision Engine Research Institute, where he has developed various specifications, standards, and guidelines for safety-related initiatives to infrastructure projects.

Keiichi Tamura is the head of the Transportation Engineering & Disaster Management Office, Nippon Koei Co., Ltd. He holds a doctorate in geotechnical engineering from the University of Tokyo and a master’s degree in transportation from the University of Canterbury. Keiichi specializes in linking sustainability and resilience measures to core business strategy, while measuring the broader costs and benefits of initiatives and outcomes. Most recently, he has led the development of resilience decision-support tool for the New Zealand Transport Agency (NZTA), which frames the evaluation of resilience measures in the context of broader infrastructure, social, cultural, and economic costs and benefits, and developed the framework for resilience of cities, environmental, social, and governance risks for the Commonwealth Bank Group.

Julie Rozenberg is an economist of the World Bank’s Sustainable Development (SD) Global Practice. Her work includes green growth and climate change mitigation strategies and climate finance. She also works on strategies for Policy Studies in Tokyo while working for ICRARM. She has also authored a number of technical and research papers in international peer-reviewed journals and local journals, and contributed to the Asia Pacific Water Summit (APWS), World Water Day, and other publications of the United Nations (UN), Global Assessment Reports (UNISDR), and Asian Water Development Outlook 2013 (AWDO2013) for Water Security in Asia (World Development Report 2013). He holds a doctorate and postdoctorate in Geology from the University of Kyoto. He is fluent in English, Japanese, and Nepali and also speaks Hindi, Tagalog, and some Spanish.

Julie Rozenberg is an economist of the World Bank’s Sustainable Development (SD) Global Practice. Her work includes green growth and climate change mitigation strategies and climate finance. She also works on strategies for Policy Studies in Tokyo while working for ICRARM. She has also authored a number of technical and research papers in international peer-reviewed journals and local journals, and contributed to the Asia Pacific Water Summit (APWS), World Water Day, and other publications of the United Nations (UN), Global Assessment Reports (UNISDR), and Asian Water Development Outlook 2013 (AWDO2013) for Water Security in Asia (World Development Report 2013). He holds a doctorate and postdoctorate in Geology from the University of Kyoto. He is fluent in English, Japanese, and Nepali and also speaks Hindi, Tagalog, and some Spanish.

Monique Cornish specializes in corporate and programme-level strategy development and technical engineering, risk and opportunity assessment, and the development of nonfinancial metrics for corporate resilience. Monique has worked across the building, infrastructure, and construction sectors in Asia-Pacific, Europe, and the Americas, working with corporate, government, and nongovernmental organization (NGO) clients on the risks and opportunities associated with responding to the challenge of creating a sustainable, resilient future. Monique specializes in linking sustainability and resilience measures to core business strategy, while measuring the broader costs and benefits of initiatives and outcomes. Most recently, she has led the development of a resilience decision-support tool for the New Zealand Transport Agency (NZTA), which frames the evaluation of resilience measures in the context of broader infrastructure, social, cultural, and economic costs and benefits, and developed the framework for resilience of cities, environmental, social, and governance risks for the Commonwealth Bank Group.

Julie Rozenberg is the economist of the World Bank’s Sustainable Development (SD) Global Practice. Her work includes green growth and climate change mitigation strategies and climate finance. She also works on strategies for Policy Studies in Tokyo while working for ICRARM. She has also authored a number of technical and research papers in international peer-reviewed journals and local journals, and contributed to the Asia Pacific Water Summit (APWS), World Water Day, and other publications of the United Nations (UN), Global Assessment Reports (UNISDR), and Asian Water Development Outlook 2013 (AWDO2013) for Water Security in Asia (World Development Report 2013). He holds a doctorate and postdoctorate in Geology from the University of Kyoto. He is fluent in English, Japanese, and Nepali and also speaks Hindi, Tagalog, and some Spanish.

Monique Cornish specializes in corporate and programme-level strategy development and technical engineering, risk and opportunity assessment, and the development of nonfinancial metrics for corporate resilience. Monique has worked across the building, infrastructure, and construction sectors in Asia-Pacific, Europe, and the Americas, working with corporate, government, and nongovernmental organization (NGO) clients on the risks and opportunities associated with responding to the challenge of creating a sustainable, resilient future. Monique specializes in linking sustainability and resilience measures to core business strategy, while measuring the broader costs and benefits of initiatives and outcomes. Most recently, she has led the development of a resilience decision-support tool for the New Zealand Transport Agency (NZTA), which frames the evaluation of resilience measures in the context of broader infrastructure, social, cultural, and economic costs and benefits, and developed the framework for resilience of cities, environmental, social, and governance risks for the Commonwealth Bank Group.

Monique Cornish specializes in corporate and programme-level strategy development and technical engineering, risk and opportunity assessment, and the development of nonfinancial metrics for corporate resilience. Monique has worked across the building, infrastructure, and construction sectors in Asia-Pacific, Europe, and the Americas, working with corporate, government, and nongovernmental organization (NGO) clients on the risks and opportunities associated with responding to the challenge of creating a sustainable, resilient future. Monique specializes in linking sustainability and resilience measures to core business strategy, while measuring the broader costs and benefits of initiatives and outcomes. Most recently, she has led the development of a resilience decision-support tool for the New Zealand Transport Agency (NZTA), which frames the evaluation of resilience measures in the context of broader infrastructure, social, cultural, and economic costs and benefits, and developed the framework for resilience of cities, environmental, social, and governance risks for the Commonwealth Bank Group.
Takeaki Shono
Civil Engineer | Hyogo Prefectural Government, Japan
Takeaki Shono specializes on route alignment management since he joined Civil Engineering Office, Hyogo Prefectural Government in 2006. He is currently in charge of the development and operation of an integrated management system of social infrastructure assets and facilities for Hyogo Prefecture.

Roger Fairclough
Managing Director | Neo Leaf Global
Roger Fairclough is a civil engineer and member of the Institution of Professional Engineers New Zealand. His career spans government, state-owned enterprises, and the private sector. This includes national 30-year energy outlooks, managing national petroleum and biofuels policy, and “The Thirty Year New Zealand Infrastructure Plan 2015” with the vision that “New Zealand’s Infrastructure will be resilient and coordinated, and contribute to a strong economy and high living standards.” The earthquakes in Canterbury, New Zealand, in 2010 and 2011 and the recovery phase have been an ongoing area of involvement. Roger is currently chair of the New Zealand Lifelines (Utilities) Council and chair of the Built Environment Leadership Steering Committee. This is a body of interest that include asset investment, national resilience, global resources, infrastructure resilience, emergency management, advanced technologies, and natural hazards.

Kensuke Ichikawa
Manager | International Consulting Department, Kosaka Kogei Co. Ltd.
Kensuke Ichikawa is a senior geotechnical civil engineer who has worked in several low- and middle-income countries as a project manager for international projects funded by the Japan International Cooperation Agency, the World Bank, and the United Nations. In 1997, after 14 years of experience there, he taught at the Interfaculty Initiative in Information Studies, Graduate School of Interdisciplinary Information Studies, University of Tokyo, as an assistant professor for three years. He was appointed as director of the Kofu River and National Highway Office in Kano Regional Development Bureau from 2016 to 2020. Since 2020, he has been a director for disaster management, Disaster Prevention Office, Water and Disaster Management Bureau.

Katsuao Tanaka
Director, Disaster Management | Water, ICT, and Disaster Management Bureau, MLIT
Katsuao Tanaka has specialized in water and disaster management, since he joined the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) in 1990. His career in Japan covers more than 10 engineering positions in the government, at the National highway management offices, and with local authorities. He has also worked at the Japan International Cooperation Agency and the World Bank.

Juan Gaviria
Practice Manager | Transport
Juan Gaviria is a practice manager of transport for Europe at the World Bank and responsible for managing the transport infrastructure portfolio in Europe and Central Asia. In addition to this role, he has extensive experience in community mapping and participatory planning, impact modeling, risk communication, and nature-based risk reduction. He has also worked toward the protection of lives, livelihoods, and infrastructure in the face of disaster and climate risks through his work with diverse stakeholders and in implementing improved hard and soft resilience measures. He has also worked at the Hong Kong and Shanghai Banking Corporation, the World Bank and the Global Environment Facility, and the Harvard Graduate School of Design, which builds on her prior focus on urban planning at Cornell University.

Fiona Collins
Lead Transport Specialist | Transport and ICT, World Bank
Fiona Collins joined the World Bank as a senior transport specialist in 2014, where she worked for two years in the Europe and Central Asia region. Before joining the World Bank, Fiona worked as a civil engineer and project manager, specializing in infrastructure projects in developing countries. She has over 30 years of experience spanning the World Bank and other development partners, road agencies, contractor work, and...
ANNEX 2: EXPERT PROFILES

Yohannes Yemane Kesete
Disaster Risk Management Specialist | GSURR, World Bank

Yohannes Yemane Kesete is a civil engineer, with specialization in infrastructure and transportation systems engineering. He has more than 10 years of both professional and research experience. He currently works in the Latin America and the Caribbean region on infrastructure improvement projects. He also heads several technical assistance projects that aim to integrate natural disaster risk into infrastructure investment decision making. In the past, he has worked as a risk modeler with AIR-Worldwide and as a structural engineer with the Ministry of Public Works of Eritrea. He holds a doctorate in civil infrastructure systems from Cornwall University in the United Kingdom. He has a bachelor’s degree in civil engineering from the University of the Nations Science and Technology (UNIST) in South Korea. Yohannes has extensive experience in the field of building risk management, rehabilitation, and insurance verification. His expertise includes infrastructure assessment and management, which he has applied in various countries.

Luqian Tian
Senior Transport Specialist | Transport and ICT, World Bank

Luqian Tian specializes in transport infrastructure and planning, where he has worked at the World Bank and at the Ministry of Transport in China. He has also worked on disaster risk management projects in the United States, the United Kingdom, and India. His expertise includes transport planning, risk management, and policy development.

Noori Mohammad Salam
Senior Road Design Engineer | THRCP, MPW, Kabul, Afghanistan

Noori Mohammad Salam works as a road design engineer with the Ministry of Public Works (MPW) in Afghanistan. He has extensive experience in road design, planning, and construction, and he has worked on several international projects in the country.

Andres Gartner
Chief Advisor | Ministry of Transport

Andres Gartner is a senior advisor at the Ministry of Transport in Argentina and has extensive experience in transportation planning and management.

Meet the Participants
Argentina, a master’s in science degree in urban economics from the Torcuato di Tella University in Argentina, and a master’s in science degree in transport from the Imperial College London in the United Kingdom.

Emma Albireu
General Manager | Vialidad Nacional
Emma Albireu is a general manager of Projects at Vialidad Nacional, the National Roads Council, which is a part of Argentina’s Transportation Ministry. She has also served as an executive director at the Highway Concession Control Body (EVI- Organo del Contra de Concesiones Vielas, OCCOVi), an infrastructure coordinator for the Argentina Operations Center (AROC), and at the United Nations Office for Project Services (UNOPS). She holds a degree in civil engineering from the Universidad Católica de Córdoba in Argentina and a master’s in science degree in international business from L’École Nationale des Ponts et Chausées in France.

Satoshi Ogita
Senior Transport Specialist | Transport and ICT, World Bank
Satoshi Ogita is a transport specialist with more than 18 years of professional experience. He joined the World Bank in 2011 and works on interurban transport projects, mainly in Brazil and Mozambique. Previously, he worked as an international development consultant analyzing more than 25 transport projects in Asia, Eastern Europe, and the Middle East for eight years. He holds a master’s degree in planning and administration from the Harvard Kennedy School in the United States and a degree in international studies from the University of Tokyo in Japan.

Livia Maria Tiemi Fujii
Coordinator | Road Transport Programs, Ministry of Transport, Ports, and Civil Aviation
Livia Maria Tiemi Fujii works as a coordinator at the Brazilian Ministry of Transport, Ports, and Civil Aviation (MTPCA). She joined the MTPCA in 2012. She is a civil engineer and holds a master’s degree in geotechnics and a master’s in business administration degree in public management.

Fabio Pessoa da Silva Nunes
General Coordinator | Maintenance and Road Restoration, National Department of Transport Infrastructure (DNI), Brazil
Fabio Pessoa da Silva Nunes is a general coordinator of road maintenance and restoration at the Brazilian Department of Transport Infrastructure (DNI). Previously, he worked in the construction division of DNI. He holds a master’s degree in structures from the University of Brasilia in Brazil.

Chalin Manopinives
Infrastructure Specialist | Transport and ICT, World Bank
Chalin Manopinives has been an infrastructure economist with the World Bank in Thailand since March 2006. He has worked on developing infrastructure strategy, renewable energy and energy efficiency, public-private partnerships, urban transport policy, road safety, public finance & decentralization, and rapid assessment of damages and losses occurred from natural disasters. He also works with the World Bank’s carbon finance team on energy efficiency projects, in addition to highway management projects in Thailand, infrastructure programs in Laos, and transport sector knowledge programs in Vietnam. He holds a doctorate in applied economics and management from Cornell University, a master’s degree in policy economics from the University of Illinois at Urbana-Champaign, and a bachelor’s degree in economics from Thammasat University.

Pom Chreay
Director | Department of Rural Health Care, Min. of Rural Development
Pom Chreay is a project director at the Ministry of Rural Development’s Department of Rural Health Care and is also a director of the World Bank-funded Cambodia Southeast Asia Disaster Risk Management Project. He has been working at the Ministry since 1998. He holds a degree in public administration from the University of Canberra in Australia and a degree in rural development management from the University of Khon Kaen in Thailand.

Phirth Kani
Deputy Director | Equipment and Road Construction Department, Min. of Public Works and Transport
Phirth Kani is a deputy director at the Ministry of Public Works and Transport. In 2011, he worked on the World Bank funded Road Asset Management Project (RAMP), which was co-financed by the World Bank, the Asian Development Bank, and Australian Aid. He has also worked as a deputy project director on the World Bank-funded Road Rehabilitation Project.

Norma Castellanos
Environmental Infrastructure Advisor | National Planning Department (NPD)
Norma Castellanos is an advisor at the National Planning Department’s Infrastructure and Sustainable Energy Unit. She works on developing infrastructure strategy and aligning public policies related to the transport sector, such as mitigation and adaptation to climate change. She holds a degree in civil engineering from the Nueva Granada Military University in Colombia.

Mauricio Cuéllar
Senior Transport Specialist | Transport and ICT, World Bank
Mauricio Cuéllar is a senior transport specialist at the World Bank, where he has worked on managing numerous transport projects in Colombia, Venezuela, Mexico, Peru, and Ecuador. Prior to joining the World Bank, he worked as a planning director at the Colombian National Planning Department’s Rural Roads and Logist Project. He has also served as a transport advisor for the mayor of Bogotá. He holds a degree in civil engineering from Los Andes University in Colombia and a master’s degree in infrastructure planning from the University of Stuttgart in Germany.

Magda C. Buitrago Ríos
Advisor | Deputy Minister of Transport, Ministry of Transport
Magda Constanza Buitrago Ríos has more than 20 years of experience in the transport sector, with specific expertise in supervising road projects, formulating and evaluating public investment projects, international credit structure, budget planning and execution, strategic planning and results management, disaster risk management, and climate change adaptation. She has also developed a manual on the evaluation of disasters, as well as worked on estimating damages and losses from earthquakes in Ecuador. She holds degrees in civil engineering and administration from the University of Santo Tomás in Colombia.

Ashok Kumar
Senior Highway Engineer | Transport and ICT, World Bank
Ashok Kumar works as a senior highway engineer at the World Bank country office in India, where he focuses on integrating and adapting climate change to rural projects. He has 35 years of experience working on rural roads and highway projects for the World Bank, with international assignments in Afghanistan, China, Mongolia, Indonesia, Nepal, the Philippines, and Sri Lanka. He also has experience in asset management and maintenance, road sector policies and reforms, modernization of road agencies, capacity building, knowledge sharing, contract management, and working on challenging assignments in low capacity regions. Previously, he worked at the Central Road Research Institute in India for 22 years, where he conducted research on rural roads.

Rajesh Bhushan
Joint Secretary | Ministry of Rural Development, Government of India
Rajesh Bhushan is joint secretary and director general at the Indian Ministry of Rural Development’s National Rural Roads Development Agency. He manages the rural connectivity sector for the Pradhan Mantri Gramin Sada Yojana (PMGYS), a flagship government program which aims to improve livelihoods and opportunities for rural people by building safe roads and bridges. The annual program budget of $3 billion dollars is administered through the State Rural Roads Development Agencies. More than one million residents have benefited from the five million kilometers of road built by the PMGYS program.

Gias Sopadze
Head | Environmental Department, Road Department, Georgia
Gias Sopadze has been the head of the Environmental Department at the Road Department of Georgia since 2009. Between 1994 and 2004, he was an advisor to the President of Georgia on environmental issues. In 2011, he established ECOVISION, a union of nongovernmental organizations involved in sustainable development projects in Georgia. He has also authored about 25 scientific and educational publications. He holds a doctorate in geographical sciences from Tbilisi State University in Georgia.
ANNEX 2: EXPERT PROFILES

ANNEX 1: PROJECT REVIEWS

**Rajeev Nayan Prasad Singh**
Project Director / Supervising Engineer, Bihar Rural Roads Project, State Government of Bihar

Rajeev Nayan Prasad Singh is a project director on the Bihar Rural Roads Project at the Bihar Rural Roads Development Agency. He has 30 years of experience in planning, executing, and monitoring Rural Roads Projects. Previously, he worked in the Advance Planning section at the Roads Department. He has participated in numerous training programs at the IIT Kharagpur (innovative technology), ASCI Hyderabad (project management & procurement), Asian Institute of Transport & Development, New Delhi, NITHE (Noida), and AIMA (Ahmedabad).

**Cordula Rastogi**
Senior Transport Economist | Trade & Competitiveness
Global Practice, World Bank

Cordula Rastogi has 25 years of experience as a global solutions economist in the World Bank’s Trade & Competitiveness Global Practice. She works on grants and other projects managed by the Global Facility for Disaster Reduction and Recovery (GFDRR), the Louisiana Hurricane Center after Hurricane Katrina, and the United Nations High Commissioner for Refugees (UNHCR). She works on projects related to disaster management and a doctorate in disaster risk management.

**Kulwinder Rao**
Senior Highway Engineer | Transport and ICT, World Bank

Kulwinder Rao is a senior highway engineer and the global lead for Fragile and Conflict Affected Countries at the World Bank. She has expertise in highway policy planning, engineering, project management, and evaluating the Integrated Road Sector Program. She holds a master’s degree in environmental science and a doctorate in disaster risk management.

**Francisco Álvaro**
Technician (International Relations) | Road Fund

Francisco Álvaro works as a technician at the Directorate of External Relations’ Road Fund. He is responsible for liaising with development partners such as the World Bank, as well as monitoring and evaluating the Integrated Road Sector Program. He holds a degree in international relations and diplomacy.

**Jorge Tomás Muonima**
Senior Infrastructure Specialist | National Roads Administration

Jorge Tomás Muonima is a division head at the National Roads Administration, where he oversees local government projects. He is currently managing a project involving road rehabilitation in roads located in the Gaza province. He has 27 years of experience as a civil engineer specializing in road construction and maintenance.

**Tin Moe Myint**
Senior Infrastructure Specialist | Transport and ICT, World Bank

Tin Moe Myint manages road and transport projects located in Myanmar. He specializes in roads and bridge construction and maintenance projects located in Myanmar. He works on grants and other projects managed by the Global Facility for Disaster Reduction and Recovery (GFDRR), the Louisiana Hurricane Center after Hurricane Katrina, and the United Nations High Commissioner for Refugees (UNHCR). He holds a master’s degree in environmental science and a doctorate in disaster risk management.

**Francisco Manuel Jose Danca**
Senior Highway Engineer | Road Fund

Francisco Manuel Jose Danca is a civil engineer specializing in roads and bridges. He is currently working on a project involving road rehabilitation in roads located in the Gaza province. He has 27 years of experience as a civil engineer specializing in road construction and maintenance.

**Victor Dato**
Senior Infrastructure Specialist | Transport and ICT, World Bank

Victor Dato is a senior infrastructure specialist at the World Bank country office in the Philippines. He specializes in roads and transportation projects.
transport projects for the Philippines government’s transport department. Recently, the transport team has started to work on local provincial road development programs. He was part of the World Bank-led Disaster Needs Assessment team in the aftermath of Typhoon Haiyan in 2013.

Maria Teresa H. Concepcion
Local Government Operations Officer | Department of the Interior

Maria Teresa H. Concepcion focuses on the project development and management of local roads and bridges information systems. She is also involved in disaster risk reduction and management, specifically disaster risk financing, local risk assessments, and vulnerability assessment of local infrastructures. In her 30 years with the Philippine Republic’s Department of the Interior and Local Government (DILG) as a local government operations officer, her work has mostly revolved around the various phases of project development and management with various international organizations and perceptions to feasibility study preparation, to results-based monitoring.

Paul Irineo P. Montano
Local Government Operations Officer | Department of the Interior

Paul Irineo P. Montano works on policy development, research and formulation, with a special focus on strengthening disaster risk governance at the sub-national levels. This includes risk information management and analysis, vulnerability assessment of local governments, and risk financing windows.

H. Concepcion

Maria Teresa

financing windows.

vulnerability assessment of local roads and bridges development and management. He was instrumental in introducing computer aided design and global position systems (GPS), as well as raised project management standards at the Road Development Authority. He served as a project director when Sri Lanka built the Southern Expressway, which opened to traffic in 2011. He holds a master’s degree in structural engineering from the University of Moratuwa in Sri Lanka and a diploma in project planning and development management from the Asian Institute of Management in the Philippines.

Phuong Thi Minh Tran

To Nam Toan

Director General | Department of Environment, Ministry of Transport, Republic of Tajikistan

Tran Anh Duong is responsible for overseeing state management duties in the areas of environmental protection, energy efficiency, and climate change reduction within the transport sector. He has been working on the environment portfolio at the Ministry of Transport since 2003. He has a degree in mechanical marine engineering from the Vietnam Maritime University and a master’s degree in maritime safety and environmental protection from the World Maritime University in Sweden.

Shyamalee Karunasekera
Deputy Director (Planning) | Highway Information and Development Management System, Road Development Authority

Shyamalee Karunasekera leads and manages a wide range of activities, including collecting, processing, and analysing road pavement data. She is also responsible for road rehabilitation, reconstruction, and maintenance programs. Additionally, she works on conceptualizing, formulating, and developing the Road Asset Management System. She joined the Road Development Authority in 1995 as a civil engineer and has worked in several areas such as strategic framework, comprehensive planning, infrastructure, highway designs, and implementation of road projects on national highways and expressways. She is a registered civil engineer, with a post graduate diploma in highway and traffic engineering from the University of Moratuwa in Sri Lanka.

Olim Yatimov
Head | Foreign Investments Cooperation, Department of Ministry of Transport, Republic of Tajikistan

Olim Yatimov is a deputy director of the Project Implementation Group at the Ministry of Transport and directly supervises regional World Bank transport programs. He has more than 10 years of extensive experience in the transport sector and cooperating with international financial institutions in preparation of road projects. He is the East Asia and South Asia regional coordinator for the priority road rehabilitation and construction projects. Under his direct supervision, his team implemented and successfully completed numerous projects.

Amali Rajapaksa
Senior Infrastructure Specialist | Transport and ICT, World Bank

Amali Rajapaksa leads the dialogue on public private partnerships (PPP) and manages the transport portfolio. She joined the World Bank in 2003 as an infrastructure specialist managing the World Bank’s portfolio portfolio on energy, water and in Sri Lanka. She has contributed greatly to the growth of the transport sector within the World Bank’s portfolio in Sri Lanka and has been instrumental in bringing the first public-private partnership (PPP) to the road sector. She has also been involved in the World Bank’s energy projects in India and Pakistan. Previously, she worked at the Government of Sri Lanka’s Bureau of Infrastructure, Development and Investments. She is a fellow of the United Kingdom Chartered Institute of Management Accountants and holds a master’s degree in business finance from Brunel University in the United Kingdom.

Slobodan Basuric
Head | Belgrade Department for Road Maintenance and Preservation

Slobodan Basuric has been actively involved in Belgrade’s road maintenance projects and road sector economic planning for the past five years. He is also the project manager for performance-based maintenance of category I and II state roads. In the area of disaster risk management, he works on assessing damages and economic losses in the roads sector. Previously, he was a supervisor specializing in landslide repairs and rehabilitation, as well as road construction. He holds a degree in civil engineering from the Civil University of Belgrade in Serbia.

Nimal Chandrasiri
Additional Director General (Construction Design) | Road Development Authority

Nimal Chandrasiri has more than 37 years of experience in highway and bridge design, as well as road construction and management in both Sri Lanka and abroad. He is instrumental in introducing computer aided design and global position systems (GPS), as well as raised project management standards at the Road Development Authority. He served as a project director when Sri Lanka built the Southern Expressway, which opened to traffic in 2011. He holds a master’s degree in structural engineering from the University of Moratuwa in Sri Lanka and a diploma in project planning and development management from the Asian Institute of Management in the Philippines.

Phuong Thi Minh Tran
Senior Transport Specialist | Transport and ICT, World Bank

Phuong Thi Minh Tran is a senior transport specialist with over 17 years of experience in project development and management. She is currently the Task Team Leader (TTL) for the Vietnam Road Asset Management Project and the P4R Local Road Asset Management Operation. She is also a co-TTL for the Central Highlands Connectivity Improvement Project. Additionally, she manages various trust funds that support road development, supervision, as well as analytical and advisory assist to the World Bank-led Disaster Needs Assessment team in the aftermath of Typhoon Haiyan in 2013.

Olim Yatimov
Head | Foreign Investments Cooperation, Department of Ministry of Transport, Republic of Tajikistan

Olim Yatimov is a deputy director of the Project Implementation Group at the Ministry of Transport and directly supervises regional World Bank transport programs. He has more than 10 years of extensive experience in the transport sector and cooperating with international financial institutions in preparation of road projects. He is the East Asia and South Asia regional coordinator for the priority road rehabilitation and construction projects. Under his direct supervision, his team implemented and successfully completed numerous projects.

Tran Anh Duong
Director General | Department of Environment, Ministry of Transport, Republic of Vietnam

Tran Anh Duong is responsible for overseeing state management duties in the areas of environmental protection, energy efficiency, and climate change reduction within the transport sector. He has been working on the environment portfolio at the Ministry of Transport since 2003. He has a degree in mechanical marine engineering from the Vietnam Maritime University and a master’s degree in maritime safety and environmental protection from the World Maritime University in Sweden.
The World Bank Disaster Risk Management Hub, Tokyo supports developing countries to mainstream DRM in national development planning and investment programs. As part of the Global Facility for Disaster Reduction and Recovery and in coordination with the World Bank Tokyo Office, the DRM Hub provides technical assistance grants and connects Japanese and global DRM expertise and solutions with World Bank teams and government officials. Over 47 countries have benefited from the Hub's technical assistance, knowledge, and capacity building activities. The DRM Hub was established in 2014 through the Japan-World Bank Program for Mainstreaming DRM in Developing Countries – a partnership between Japan's Ministry of Finance and the World Bank.