

Practical solutions for adaptation in land use planning, water and coastal zones

How to make better informed anticipatory decisions

Ad Jeuken

Marjolijn Haasnoot, Herman van der Most, Marcel Marchand, Alessio Giardino, Frans van de Ven

World Bank, Washington, May 11, 2015

Aim today

Identify major gaps and challenges for adaptation due to existing regulatory, land-use planning, financial and market incentives; and options that you have devised to overcome these challenges.

IEG identifies already some of these major challenges

Some best practices from Deltares' experience

- Use of an adaptive planning approach stimulating robust and flexible solutions
- Connect long term options to short term decisions.
- Objective driven analysis considering multiple options in reaching it (decrease water shortage vs. build a dam)
- Use of learning-, decision- and design tools to engage with stakeholders
- Flexibility in approaches from heavy data and model dependent to using expert knowledge

Content of presentation: tools and examples Following adaptive planning approach (DAPP)

Haasnoot et al. (2013) Glob. Env. Change. 10.1016/j.gloenvcha.2012.12.006

1. Objectives, vulnerabilties, scenarios

- Setting the scope, priorities, main obejctives
- What are key vulnerabilities of your 'system': sectors, critical infra structure, assets, management
- By what key external uncertain developments is this vulnerability influenced the most
- When will this lead to a need to take action?

TOOLS: Risk/Vulnerability maps, scenarios, adaptation tipping points

Spatial distribution of vulnerabilitues

Hazard

Adverse consequences

Flood hazard visualization

Adaptation Tipping Point & Use by date of policy action

A stress test: How much (climate) change can we cope with?

When do start to achieve missing our objectives?

Example ATP, Rhine Meuse Estuary

Note: Red bullets indicate endpoints of a strategy, blue arrows indicate the strategy can cope with higher sea levels. The climate scenarios used in the Netherlands are marked with dotted lines.

Source: Jeuken et al., 2010. EEA, 2013

2,3 define and assess options for adaptation

- Explore options for adaptation (spatial, structural, instrumental or public versus private, grey versus green)
- Do they reflect different societal perspectives?
- What is the efficiency of the individual options
- Do they include or exclude eachother
- (economic) evaluation of pathways

TOOLS: adaptation pathways, economic evaluation methods, delta ateliers

Adaptation pathways describe a sequence of policy actions or investments in institutions and infrastructure over time to achieve a set of pre-specified objectives under uncertain changing conditions,

An adaptation pathways map shows **different possible sequences of investment decisions**. A scorecard helps to evaluate the decisions.

Example: Adaptation Pathways

How to keep a river navigable in a changing environment that may result in lower water levels in the river?

Scorecard for Pathways

Path actions	Costs	Target effects	Side effects
1 🔾	+++	+	0
2 🔾	+++++	0	0
3 🔾 🔾	+++	0	0
4 🔾 🔾	+++	0	0
5 🔘	0	0	-
6 🔾 🔾	++++	0	-
7 🔾 🔾	+++	0	-
8 00	+	+	
9 🔾	++	+	

Adaptation pathways for the Yom river – after floods 2011

Flooding problems at Sukothai district

Hydrograph for the three characteristic years at the location Y.14

Screening of measures and plans

(R): Reduction of peak flows	(D): Diversion of peak flows		
 Reservoir development in Upper of Middle reach of Yom river (1 or 2 large scale reservoir(s)) Optimized operation of multipurpose reservoirs for flood mitigation Reservoir development in tributaries of Yom river (medium scale reservoirs in various tributaries) Watershed management and conservation measures, including reforestation 	 Flood retention: diversion of river flow to adjacent retention areas (monkey cheeks) Diversion of peak flows (to Nan river) Flood Bypass around Sukothai area 		
 (P): Improvement protection against floods Raising and reinforcement of embankments Dredging of river to increase the discharge capacity 	 (M): Mitigation of impacts of floods Development of flood forecasting and early warning system Flood response and disaster recovery plan, including awareness raising 		
 (V): Reduction of vulnerability for floods Adaptation of current land use Land use regulation to reduce flood vulnerability of new developments 			

Combining different measures

Adaptation pathways

Suitability map for local scale adaptation

Rain water harvesting potential

Rain Water Harvesting Potential

Can many local solution be alternative for large scale infrastructure?

Many local solutions

Climate and global Change

Could make a difference

Economic Evaluation of Adaptation Pathways

4. Design and implement plan

To connect interactively:

- Land use planners (technical) experts ("knowledge and design")
- Hydraulic objectives local initiatives
- Those who have Costs with benefits
- Abstract ideas images/maps

Goals of the Masterplan Beira 2035

- 1. Increase the possibilities of economic growth = Opportunities
- 2. Decrease the threats of climate change = Threats
- 3. Improve the living conditions = Opportunities

Make a safe, prosperous and more beautiful Beira

Projection of Future Growth

		Projection 2035	
	Current	Low scenario (2.25%)	High scenario (4.25%)
Population	443.000	827.000	1.422.000
Residential areas	7.743 ha	11.366 ha	16.991 ha
Industrial area	580 ha	1.375 ha	3.150 ha
Port area (total area)	442	575 ha	1.270 ha
Port area (net area	70 ha	227 ha	507 ha
terminals)	78 ha	237 ha	527 ha
Area requirements 2035	8.765 ha	13.320 ha	21.100 ha

Urban development plan according to stakeholders

tourism zone

Adaptation Support Toolbox for Urban adaptation

Climate Adaptation App

Adaptation Support Tool

Dynamic Evaluation Tool

Month

-0.6

to visualize dynamic effect of adaptation measures

Deltares

Creating resilience: a process of dialogue, design & engineering

To conclude

- Use of an adaptive planning approach stimulating robust and flexible solutions
- Connect long term options to short term decisions.
- Objective driven analysis considering multiple options in reaching it
- Use of various learning-, decision- and design tools to engage with stakeholders
- Flexibility in approaches from heavy data and model dependent to using expert knowledge
- The real challenge is in the implementation, but it helps if there is support by key stakeholders and sound information base

3rd Annual Workshop on Decision Making Under Deep Uncertainty

3 & 4 November 2015, Delft, The Netherlands

http://deepuncertainty2015.deltares.nl | Contact: deepuncertainty2015@deltares.nl

Flooding of Deventer, Luud Riphagen

Deltares