Paramaribo Strategic Flood Risk Assessment - innovative modelling approach

Climate and Disaster Resilience in Small Island Developing States (SIDS):
Practical Solutions

Cancún, México

May 21-23, 2017

Scott Ferguson (Senior Flood Risk Specialist)

Acknowledgements:

- Satish Mohan and MoPW Team (Government of Suriname)
- Armando Guzman (World Bank TL)
- Isabella Bovolo (Hydrologist)
- Juliana Castaño Isaza (Coastal)
- JBA Consultants

Flood Hazard Analysis – data and approach (CHARIM)

Flood Hazard Mapping

Scenario	Area of inundation > 0.15m (Km²)				
	10 Year	50 Year	100 Year	200 Year	
Baseline pluvial design event	421	444	450	455	
Baseline tidal design event	97	122	132	142	
Future pluvial design event (2050)	432	452	457	461	
Future Tidal design event (2050)	151	168	177	190	

Exposure

Land Registry Data

GFDRR

Vulnerability

Cost estimates

Commercial contents value	US\$/m²	
Fixtures and fittings	400	
Movable equipment	160	
Stock	440	
Services	490	
Total	1,490	

Building costs				
Residential	Construction cost (US\$/m ²			
R1 - Concrete (masonry)	430			
R2 - Wooden	375			
R3 - Combined concrete-wood	400			
R4 - Wooden building on concrete stilts	590			
R5 - Concrete building on concrete stilts	695			
R6 - Multi-story	350			
Commercial/industrial				
C1 - Steel construction	700			
C2 - Full concrete	700			
C3 - Combined steel-concrete	750			

Residential contents value	US\$
Sofa + chairs	1,000
Fridge	800
Cooker	400
Washing machine	400
TV + electrical goods	600
Table + chairs	600
Carpets	100
Bedding etc.	1,500
Cloths and personal	500
Total	5,900

Vulnerability - Depth damage curves

Exposure database – GIS grid containing information on building type, usage, value and density

Risk

Vulnerability curve

Total Event Flood Damages and AAD

	Calculated total damages (US\$ M)				
Scenario	10	50	100	200	Total AAD
	Year	Year	Year	Year	Total AAD
Baseline pluvial design events	171	297	360	424	60.4
Future pluvial design events (2050)	218	377	451	530	76.7
Baseline tidal design events	1,069	1,488	1,684	1,886	350.4
Future tidal design events (2050)	2,185	2,747	3,001	3,256	695.1

Options Appraisal

Get the "right" balance between structural and non-structural measures Keep the water away from the Keeping the people away from people the water Increased preparedness Hard engineered Awareness campaigns • Flood conveyance Urban management • Flood storage Flood avoidance • Urban drainage systems • Land use planning • Ground water management • Resettlement • Flood resilient building design Emergency planning & management Flood defenses • Early warning systems and evacuation Eco-system management • Critical infrastructure Utilizing wetlands Speeding up recovery • Creating environmental buffers • Building back safer • Urban greening efforts Risk insurance

Option 7: Saramacca Canal improvements – widen and increase conveyance along the canal through dredging and removal of vegetation.

ACP-EU Natural Disaster Risk Reduction Program

Option 12: Flood forecasting and early warning – assume flooding still occurs, but vulnerability can be reduced i.e. reflected through contents depth damage curves

Option 13: Increased mangrove forests – reduced coastal inundation as defined by Coastal study

Key outcomes – support tools for:

- Risk reduction decision making, with knowledge of the levels of risk faced
- Investment planning, with improved understanding of costs through knowledge annual average damage (AAD)
- Policy development through better understanding of key risk factors
- Climate change impact assessment, with ability to test different future scenarios
- Capacity building a key objective of the project, through training and a legacy of data and tools that can be used in the future for a wide range of detailed as well as strategic studies.

