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1 Introduction 

1.1 Project Summary 

Parametric insurance is a promising disaster risk management strategy whereby prompt payouts 

are triggered whenever measurable indices exceed predefined thresholds. This promptness is 

critical in developing countries, as they are particularly exposed to short-term liquidity gaps that 

may overwhelm their capacity to cope with large disasters. From a machine learning perspective, 

this is essentially a classification rule for predicting loss or no loss based on the trigger variable. 

The rule is developed using past training sets of hazard and loss data (supervised learning). 

Despite the advantages of simplicity, transparency and rapid payouts, there is a lack of confidence 

and reluctance to use parametric insurance because of basis risk – the misclassification of events 

due to false positives and false negatives. Basis risk leads to inefficient transactions and higher 

product costs, reducing their appeal to end-users and investors. It can also result in a failure to 

issue payouts when disaster events occur, which can have adverse consequences for insureds 

counting on rapid post-event funding. The problem of basis risk in parametric insurance is 

exacerbated by: 

1. The use of ad-hoc parametric trigger rules that have not used rigorous statistical modelling 

to learn from past data and optimally exploit increasing amounts of data; 

2. The lack of robust evaluation methods for understanding and quantifying parametric trigger 

performance. 

The SMART project aims to address these issues through the application of appropriate machine 

learning and statistical concepts to develop a new framework for parametric trigger modelling. 

The project covers Thematic Area 2 of the Terms of Reference, entitled “Machine Learning and 

Big Data for Disaster Risk Financing”. 

To demonstrate the methodology and its pathway to operationalization, a pilot study is made for 

multiple hazards in the Dominican Republic. The Dominican Republic currently has little reliance 

on risk transfer mechanisms despite being highly exposed to natural hazards, such as tropical 

cyclones, floods, and droughts. In 2015, the average annual loss due to natural hazards was 

estimated at USD 420 million. Productive sectors, particularly agriculture, tend to be severely 

affected, leading to socio-economic consequences and food insecurity for the country. As such, 

SMART pays particular attention to this aspect, covering the Focus Area of the Terms of Reference 

“Disaster Risk Financing Mechanisms to Manage Food Insecurity”. 

1.2 Scope of the Report 

The present report describes the main activities and outcomes of the SMART project, which started 

in mid-2019 and is now concluded. The document is organized as follows. Section 2 briefly 

describes both the climatological and socio-economic context of the Dominican Republic and the 

catastrophe insurance market. The research and development activities and results are presented 

in Section 3. Section 4 addresses the pathway to potential future operationalization of the project. 

Lastly, Section 5 covers the monitoring and evaluation indicators required to assess the success of 

the project. 
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2 Pilot country: the Dominican Republic 

2.1 Climatological and socio-economic context 

The Dominican Republic is located on the eastern part of the island of Hispaniola, one of the 

Greater Antilles, in the Caribbean region. Its area is approximatively 48,671 km². The central and 

western parts of the county are mountainous, while extensive lowlands dominate the southeast. 

There are four main mountain chains, from Northeast to Southwest: the Cordillera Septentrional, 

the Cordillera Central, the Sierra de Neyba, and the Sierra de Bahoruco, where the higher Antillean 

peaks (Duarte Peak, 3,087m and La Pelona, 3,085 m) are located. The mountain chains are 

separated by three major Northeast-Southwest tectonically controlled valleys. The physiographic 

configuration has a strong influence on the distribution of wet and dry areas in the country, 

producing very different environments between the windward and leeward side of the Cordillera 

Central (Izzo et al., 2010) 

The climate of the Dominican Republic is classified as "tropical rainforest". However, due to its 

topography, the country's climate shows considerable variations over short distances. The average 

annual rainfall is approximately 1,500 mm. Along the eastern and southern coasts, there is a rainy 

season between late April and October, while the northern coast, which is exposed to the trade 

winds, is rainy throughout the year. However, the north-western coast experiences a decrease in 

rainfall from June to September. 

The average annual temperature is about 25 ℃, with January being the coldest month (average 

monthly temperature over the period 1901-2009 of about 22 ℃) and August the hottest (average 

monthly temperature over the period 1901-2009 of about 26 ℃) (World Bank, 2019) 

Because of the North-eastern trade winds, which blow from November to March, the north facing 

slopes are usually wetter than those exposed to the south. However, the presence of mountain 

ranges can increase or decrease the effect of the trade winds, so much so that some areas have a 

very humid climate and lush vegetation, while others are nearly barren. For example, in Azua, on 

the coast of the Ocoa Bay, only 640 mm of rainfall per year, and even less at Lake Enriquillo, 

closed between the two Sierras; the south-west coast of the Pedernales province is quite arid as 

well. 

From December to March, usually the country is affected by some frontal systems from the United 

States, which could bring clouds and rains, and a cool wind, able to lower the temperature by a 

few degrees. In these cases, the temperature can drop below 10 °C in the inland hilly areas, and 

around freezing in the mountains. 

The Dominican Republic is exposed to hurricanes and tropical cyclones. Traditionally in the 

Caribbean the hurricane season starts on June 1st and ends on November 30th; in the Dominican 

Republic the most active months for tropical cyclones are usually August and September. 

The Dominican Republic has a population of 10,6 million people. The country is divided into 31 

provinces and 10 regions. Provinces are the first level administrative subdivisions of the country. 

Provinces are then divided into municipalities. Population is mainly located in the Santo Domingo 

province, followed by Santiago and Distrito National, where the capital city of Santo Domingo is 

situated (Figure 1 and Figure 2). 
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Figure 1:  Provinces of the Dominican Republic 

 

 
Figure 2: Administrative regions of the Dominican Republic 
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The Dominican Republic is classified as an upper-middle income developing country (World 

Bank, 2019a). The economy, which is the largest in the Caribbean and Central America region, 

depends on mining, agriculture, trade, and services. In recent years, the service sector, due to 

growth in tourism and free-trade zones, has overtaken agriculture as the leading employer of 

Dominicans. However, agriculture is still the most important sector in terms of domestic 

consumption and is in second place in terms of export earnings. Agriculture represents 11% of the 

GDP and employs nearly 15% of the population. Small farmers represent 72% of the total number 

of farmers, but account only for 28% of cultivated area (World Bank, 2012). The fertile Cibao 

Valley is the main agricultural centre. The Dominican Republic is the second-largest producer of 

sugarcane in the Caribbean after Cuba. Sugarcane is the nation’s most important crop. Besides 

sugar, the Dominican Republic is also a major exporter of coffee, cocoa and tobacco. All these 

crops are cultivated in the Cibao Valley. Bananas and fresh fruit exports have increased in recent 

years. The Dominican Republic is the largest producer of organic bananas worldwide. The dairy 

sector is a key source of local employment, although it is not able to meet the demand of dairy 

products consumed domestically and in the hotels. Dominican milk is produced by 59,000 farmers 

who own about 1,200,000 cattle distributed mainly in the Northwest, Southwest and Eastern 

regions of the country. 

Weather-related disasters have a significant impact on the economy of the Dominican Republic. 

Particularly, the agricultural sector is highly vulnerable to these natural hazards. The country is 

ranked as the 10th  most vulnerable in the world and the second in the Caribbean, as per the Climate 

Risk Index for 1997-2016 report (Eckstein et al., 2017). It has been affected by spatial and temporal 

changes in precipitation, sea level rise, and increased intensity and frequency of extreme weather 

events. Climate events such as droughts and floods have had significant impacts on all the sectors 

of the country’s economy, resulting in socio-economic consequences and food insecurity for the 

country. Over the period from 1960 to present, the most frequent natural disasters were tropical 

cyclones (45% of the total natural disasters that hit the country), followed by flood (37%) 

according to the International Disaster Database EM-DAT. Floods, storms and droughts were the 

disasters that affected the largest amount of people and caused huge economic losses. In one case, 

hurricane George in 1998, caused the loss of about 55% of the agricultural system, partly from 

landslides and flash floods. 90% of all banana plantations in the area were destroyed. Rice, bananas 

and cassava, the most basic foods on the island, were hit hard. Large pastures for animals were 

destroyed as well as poultry and other necessities. The damage to farmland and agriculture would 

total out to about $434 million. In case of droughts, DesInventar dataset reports that in 1991 a 

widespread drought led to about 15 million US $ losses (United Nations Office for Disaster Risk 

Reduction, 1994). In 2010, during a severe drought, serious losses were reported all over the 

country. The cocoa and rice sector experienced a lack of water for irrigation due to the decreased 

storage capacity of dams; rice-producing regions reported a 30% reduction in rice production, 

while rice production at national level decreased between 10% and 15% (World Bank, 2013). In 

2011, hundreds of quintals of plantain, yucca, and sweet potato were lost in the provinces of La 

Vega, Santiago, Valverde, Montecristi (Payano-Almanzar and Rodriguez, 2018). However, they 

underline that storms and floods produced more economical damages with respect to droughts over 

the 1970-2011 period. 

 

 



SMART 

Final Report 

June 2021 

7 

2.2 Brief description of catastrophe insurance market 

Even though the Dominican Republic is highly exposed to natural hazards, the insurance market 

is small and the proposed insurance policies are characterized by a low degree of sophistication. 

Insurance penetration in the country is low with respect to other Caribbean nations; in fact, it is 

limited to 1.21% of the GDP, while in Jamaica it is 5.03% of GDP and in Puerto Rico it reaches 

15.02% of the GDP. The insurance market is characterized by the presence of 33 insurance 

companies, including two reinsurers. In 2013, the five leading companies had a cumulative market 

share of 80%, while 16 companies had a market share of less than 1%. 

Currently, a traditional indemnity-based crop insurance product is offered by AGRODOSA 

(Asecuradora Agropecuaria Dominicana S.A.). AGRODOSA is a state-funded agricultural 

insurance company that provides insurance for about 20% of the loans provided by the state-

funded rural bank, Banco Agricola (BAGRICOLA). The AGRODOSA insurance program has 

experienced many difficulties that affected the implementation of a broader sustainable 

agricultural insurance program, such as premium subsidy whereby 30-50% of the premiums for 

individual farmers are covered directly by the state. AGRODOSA insures an area of approximately 

4,000 hectares of which 70% is voluntary and not linked to credit or a loan from Banco Agricola. 

It also requires insured farmers to follow specific guidelines regarding risk management of their 

crops. In the event of damage or loss of crops, the insured is indemnified based on the amount of 

the investment made up to the time that the loss occurred. Generally, it offers farmers two type of 

policies: 

 

1. Yield-based multi-peril crop insurance (MPCI): the product covers damage to crops based 

on variance from historical recorded yields. However, the product is only available for 

those crops for which sufficiently detailed historical data are available (rice and green 

beans). The policy provides coverage for the major part of perils (excess rain, wind, hail, 

drought, flood, cyclone, hurricane, tornado, accidents and plant diseases and insect 

infestations). Fire is the only peril excluded. The MPCI coverage payout is determined 

when, “actual yield obtained by the insured on its insured unit falls below the guaranteed 

yield (which is usually set at a maximum of 70% of the normal average yield) determined 

for each county and crop season. The indemnities are subject to the application of 

deductibles equivalent to 10% of the total sum insured for drought and 5% for the 

remaining covered perils (USAID and REDDOM, 2013). 

2. Standing Crop Insurance: In this case, the value of the plant is covered. This type of policy 

is used for bananas and plantains. 

 

The body directly responsible for agricultural insurance within the Ministry of Agriculture is the 

General Directorate of Agricultural Risks (DIGERA). This groups public and private organism 

such as the Ministry of Agriculture (which is the coordinator), the Ministry of Finance, the 

Superintendency of Insurance, the Dominican Agroenterprise Board, Inc. (JAD), the National 

Council of Producers of the Reform Agrarian, the Dominican Chamber of Insurers and Reinsurers, 

the Dominican Association of Ranchers and Farmers, (ADHA) and the Dominican Agricultural 

Bank. 

DIGERA is the entity in charge of regulating and promoting the agricultural subsidy granted by 

the Dominican government to small and medium-sized producers in the country to ensure their 
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crops. According to the law, any insurer can have the contribution of the State. DIGERA is 

supervised by the Superintendency of Insurance regarding the issuance, control, extension of 

insurance policies and contracts. Every year, DIGERA issues a resolution indicating the crops that 

will be supported with insurance subsidies purchased by producers. AGRODOSA absorbs the 

subsidy once the insurance policy. 

DIGERA grants a subsidy of 50% of the cost of the policy, with the objective that the producers 

ensure their crops, infrastructure, or livestock stocks, and thus minimize losses due to abnormal 

variations in nature and change climate. Annual budget allocations exceed 165 million pesos 

Dominicans ($EU 3.6 million). The State contribution until 2017 was 11 million dollars, which 

constitutes the contribution to premiums. In 2018, an extraordinary contribution of 6 million 

dollars was requested to be consigned in the budget of 2019. The insurance system administered 

by AGRODOSA receives state support to cover between 25% and 50% of the premium, thus, the 

insured agricultural producer pays the remaining 50% to 75%. 

 

In another work, at the end of 2012, USAID in cooperation with REDDOM designed the Climate 

Resiliency and Index Insurance (CRII) for Small Farmers in the Dominican Republic. The original 

goal of the program was to improve resilience to climate change, reduce disaster risk, and promote 

public-private partnerships. As part of this goal, the program supported the establishment of a 

commercially sustainable index insurance product. Dairy was selected as the most suitable 

agricultural sector to implement an index-based insurance program. REDDOM consulted 75 

associations of dairy producers, including about 7,800 farmers, and found that 94% of the farmers 

believe that drought is the main risk for cattle operation and milk production in the Northwest 

region. In November 2014, the index insurance product was presented to insurers, financial 

institutions and farmers. It was based on satellite images of vegetation conditions (the Normalized 

Difference Vegetation Index, NDVI, was used to evaluate the availability of forage for cows). It 

could be considered as a turning point in the Dominican insurance market because: 1. It was the 

first index insurance product in the country; 2. It was the first private insurance product for the 

agricultural sector in the country; and 3. It was the first insurance product designed with the 

participation of all value chain stakeholders including farmers, insurer and delivery channel. 

However, due to the high cost of the premium, the product has never been operative on the market 

(USAID and REDDOM, 2013). 
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3 Research and development 

The development of models supporting catastrophe insurance products should be based on a sound 

scientific foundation. This section presents the three lines of research that were pursued during the 

SMART project, having in mind their future application in the development of parametric 

insurance programs. The first line of research takes upon the challenge of using machine learning 

algorithms to identify extreme weather events with the purpose of reducing basis risk, the biggest 

challenge in parametric insurance. The ability to objectively detect such events can play a role in 

parametric insurance, not only from the improvement in their reliability, but also in the promptness 

of the payouts, which is key for the insured. The second line of research moves towards the 

predictions of time series with the aim of being able to evaluate reduction in production of milk. 

In the Dominican Republic, the dairy sector is very vulnerable to drought and most farmers (94%) 

pointed out to REDDOM that drought is affecting the daily production of milk. In terms of 

handling losses, almost 70% of producers have had to borrow from intermediaries to replenish lost 

cattle stocks and/or develop prevention initiatives (USAID and REDDOM, 2013). Therefore, 

models able to accurately predict milk production with a certain lead time at country level were 

developed. The two lines of research developed models performing tasks at national scale. This 

choice was dictated from the data available at the moment. In the final part of the project, we 

decided to work on a finer spatial resolution by means of crop models. These models are able to 

reproduce the behavior of crops depending on environmental and meteorological parameters. The 

advantage of using these models is their ability to produce yield estimates at higher spatial 

resolution rather than country-wide dependent on the resolution of the input data. These 

characteristics make the outcomes of this work very interesting for parametric insurance programs 

granting the possibility of designing a tailor-made product for the farmers. 

3.1 Identification of floods and droughts 

The initial undertaking of the project was to develop a methodology, which aims to assess the 

potential of machine learning for weather index insurance. To achieve this, we propose and apply 

a machine learning methodology that is capable of objectively identifying extreme weather events, 

namely flood and drought, in near-real time, using quasi-global gridded climate datasets derived 

from satellite imagery or a combination of observation and satellite imagery. 

3.1.1 Datasets 

3.1.1.1 Environmental variables 

The data-driven nature of ML models implies that the results yielded are as good as the data 

provided. Thus, the effectiveness of the methods depends heavily on the choice of the input 

variables, which should be able to represent the underlying physical process (Bowden et al., 2005). 

The data selection (and subsequent transformation) therefore requires a certain amount of a priori 

knowledge of the physical system under study. For the purpose of this work, precipitation and soil 

moisture were used as input variables for both flood and drought. An excessive amount of rainfall 

is the initial trigger to any flood event (Barredo, 2007), while scarcity of precipitation is one of the 

main reasons that leads to drought periods (Tate and Gustard, 2000). Soil moisture is instead used 

as a descriptor of the condition of the soil. With the idea to implement a tool that can be exploited 

in the framework of parametric risk financing, we selected the datasets to retrieve the two variables 

according to five criteria: 
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1. Spatial resolution: a fine spatial resolution that takes into account the climatic features of 

the various areas of the considered country is needed to develop accurate parametric 

insurance products. 

2. Frequency: the selected datasets should be able to match the duration of the extreme event 

that we need to identify. For example, in the case of floods, which are quick phenomena, 

daily or hourly frequencies are required. 

3. Spatial coverage: global spatial coverage enables the extension of the developed approach 

to areas different from the case study region. 

4. Temporal coverage: since extreme events are rare, a temporal coverage of at least 20 years 

is considered necessary to allow a correct model calibration. 

5. Latency time: a short latency time (i.e., time delay to obtain the most recent data) is 

necessary to develop tools capable of identifying extreme-events in near-real time. 

 

Based on a comprehensive review of available datasets, we found six rainfall datasets and one soil 

moisture dataset, comprising 4 layers, matching the above criteria. With respect to the studies 

analysed in (Fung et al., 2019; Hao et al., 2018; Mosavi et al., 2018) that associated a single dataset 

to each input variable, here six datasets are associated to a single variable (rainfall).  

The use of multiple datasets is able to improve the ability of models in identifying extreme events, 

as demonstrated for example by (Chiang et al., 2007) in the case of flash floods. In addition, single 

datasets may not perform well; the combination of various datasets produces higher quality 

estimates (Chen et al., 2019)Two merged satellite-gauge products (the Climate Hazard Group 

Infrared precipitation, CHIRPS and the CPC Morphing technique, CMORPH,) and four satellite-

only (the Global Satellite Mapping of Precipitation GSMaP, the Integrated Multi-Satellite 

Retrievals for GPM, IMERG; the Precipitation Estimation from Remotely-Sensed Information 

using Artificial Neural Networks, PERSIANN; and the Global PERSIANN Cloud Classification 

System, PERSIANN-CCS) datasets were used. The spatial variability of the annual average 

precipitation is displayed in Figure 3.  

 

Soil moisture was retrieved from the ERA5 reanalysis dataset, produced by the European Centre 

for Medium Range Weather Forecast (ECMWF). The dataset provides information on 4 soil 

moisture layers (Layer 1: 0-7 cm, Layer 2: 7-28cm; Layer 3: 28-100cm; Layer 4: 100-289cm). 

Figure 2 displays the average amount of soil moisture for the four layers. 
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Figure 3: Average annual rainfall over the Dominican Republic according to the six considered 

datasets. (a) CCS, (b) CHIRPS, (c) CMORPH, (d) IMERG, (e) GSMaP, (f) PERSIANN. 

 

The main features of the selected datasets are reported in Table 1.  
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Table 1: Main features of the selected datasets 

Data set Type Resolution Frequency Coverage 
Time 

span 
Latency Reference 

CCS Satellite 0.04° 1h 
60°S–

60°N 

January 

2003–

present 

Within 

6 hours 
(Hong et al., 2004) 

CHIRPS/ 
Satellite-

Gauge/ 
0.05° Daily 

50°S–

50°N 

January 

1981-

present 

Within 

3 weeks 

/Within 

3 days 

(Funk et al., 2015) 

CHIRP 
Satellite 

only 

CMORPH 
Satellite-

Gauge 
0.07278° 3h 

60°S–

60°N 

January 

1998–

present 

Within 

14 days 
(Joyce et al., 2004) 

GSMaP Satellite 0.1° 1h 
60°S–

60°N 

March 

2000– 

present 

Within 

12 hours 

(Ushio and Kachi, 2010; 
Ushio et al., 2009) 

IMERG 

(Late run) 
Satellite 0.1° 30 min 

60°S–

60°N 

June 

2000-

present 

Within 

12 hours 
(Bolvin et al., 2018) 

PERSIANN Satellite 0.25° 1h  
60°S–

60°N 

March 

2000-

present 

Within 

48 hours 
(Sorooshian et al., 2000) 

ERA-5 Reanalysis 0.25° 1h Global 
1979-

present 

Within 

5 days 
(ECMWF et al., 2018) 

 

3.1.1.2 Historical catalogue of events 

The performances of a ML model are strictly related to the data the algorithm is trained on, hence, 

the reconstruction of historical events (i.e., the targets), although time-consuming, is paramount to 

achieve solid results. Therefore, a wide range of text-based documents from multiple sources have 

been consulted to retrieve information on past floods and droughts that hit the Dominican Republic 

over the period from 2000 to 2019. International disasters databases, such as the world renowned 

EMDAT, Desinventar and ReliefWeb have been considered as primary sources.  

The events reported by the datasets have been compared with the ones present in hazard-specific 

datasets (such as FloodList and the Dartmouth Flood Observatory) and in specific literature 

(Herrera and Ault, 2017; Payano-Almanzar and Rodriguez, 2018) to produce a reliable catalogue 

of historical events. Only events reported by more than one source were included in the catalogue. 

shows the past floods and droughts hitting the Dominican Republic over the period from 2000 to 

2019. More details on the events can be found in Table 2 (floods) and Table 3 (droughts). 
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Figure 4: Time series of historical events 

 

Table 2: Flood events in the Dominican Republic (2000-2019) 

Event 

number 
Start date End date type Source 

1 11/5/1981 12/5/1981 heavy rain EM-DAT/Desinventar 

2 14/09/1985 14/09/1985 heavy rain DFO 

3 30/05/1987 2/6/1987 heavy rain DFO 

4 22/09/1987 23/09/1987 tropical cyclone-Emily EM-DAT 

5 1/2/1988 2/2/1988 heavy rain DFO 

6 24/08/1988 26/08/1988 heavy rain EM-DAT 

7 2/11/1988 2/11/1988 heavy rain Desinventar 

8 18/09/1989 18/09/1989 tropical cyclone-Hugo EM-DAT 

9 22/04/1991 22/04/1991 heavy rain EM-DAT 

10 26/05/1992 27/05/1992 heavy rain Desinventar 

11 21/05/1993 21/05/1993 heavy rain EM-DAT 

12 26/05/1993 27/05/1993 heavy rain Desinventar 

13 18/08/1995 20/08/1995 storm EM-DAT 

14 6/10/1995 7/10/1995 storm EM-DAT 

15 10/9/1996 12/9/1996 
tropical cyclone-

Hortense 
EM-DAT 

16 22/10/1996 22/10/1996 heavy rain EM-DAT 

17 17/11/1996 23/11/1996 tropical cyclone DFO 

18 22/09/1998 24/09/1998 
tropical cyclone-

Georges 
Glide/EM-DAT 

19 23/10/1999 25/10/1999 tropical cyclone DFO 

20 6/10/2001 6/10/2001 tropical cyclone -Iris EM-DAT 

21 2/6/2002 6/6/2002 heavy rain Glide/EM-DAT 

22 18/04/2003 18/04/2003 heavy rain Glide 

23 14/11/2003 14/11/2003 coastal flood Glide 

24 6/12/2003 7/12/2003 tropical cyclone-Odette DFO 

25 23/05/2004 24/05/2004 heavy rain DFO 

26 1/9/2004 1/9/2004 
tropical cyclone -

Frances 
EM-DAT 

27 9/9/2004 10/9/2004 tropical cyclone -Ivan EM-DAT 
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28 16/09/2004 19/09/2004 storm -Jeanne Glide 

29 13/05/2005 14/05/2005 heavy rain EM-DAT 

30 23/10/2005 23/10/2005 tropical cyclone -Alpha EM-DAT 

31 26/03/2007 26/03/2007 heavy rain EM-DAT 

32 31/05/2007 31/05/2007 heavy rain DFO 

33 28/10/2007 31/10/2007 tropical cyclone-Noel DFO 

34 12/12/2007 12/12/2007 tropical cyclone-Olga DFO 

35 15/08/2008 16/08/2008 storm-Fay DFO 

36 25/08/2008 28/08/2008 tropical cyclone-Gustav Glide 

37 2/9/2008 3/9/2008 tropical cyclone-Hanna EM-DAT 

38 20/05/2009 24/05/2009 heavy rain Glide 

39 20/06/2010 22/06/2010 heavy rain Glide 

40 17/07/2010 23/07/2010 heavy rain EM-DAT 

41 3/7/2011 5/7/2011 heavy rain DFO 

42 4/8/2011 4/8/2011 storm-Emily EM-DAT 

43 22/08/2011 24/08/2011 tropical cyclone-Irne Glide/EM-DAT 

44 25/04/2012 25/04/2012 heavy rain EM-DAT 

45 23/08/2012 26/08/2012 tropical cyclone-Isac Glide/EM-DAT 

46 23/10/2012 26/10/2012 tropical cyclone-Sandy EM-DAT 

47 22/08/2014 25/08/2014 storm-Cristobal DFO 

48 3/11/2014 3/11/2014 heavy rain EM-DAT 

49 28/08/2015 30/08/2015 tropical cyclone-Erika Glide 

50 23/09/2015 25/09/2015 heavy rain EM-DAT 

51 7/5/2016 9/5/2016 heavy rain DFO 

52 31/07/2016 1/8/2016 heavy rain floodList 

53 3/10/2016 5/10/2016 
tropical cyclone-

Matthew 
floodList 

54 5/11/2016 6/11/2016 heavy rain DFO 

55 23/04/2017 1/5/2017 torrential rain DFO 

56 16/05/2017 17/05/2017 heavy rain floodList 

57 21/09/2017 22/09/2017 tropical cyclone -Maria floodList 

58 4/5/2018 6/5/2018 heavy rain floodList 

59 10/7/2018 10/7/2018 tropical cyclone -Beryl DFO 

 

 

Table 3: Historical drought events in the Dominican Republic. 

Event number Start date End date Duration (days) Source 

1 Oct-1982 Apr-1983 182 Desinventar 

2 May-84 May-1984 30 Desinventar 

3 Apr-1985 Jul-1985 91 
US Department 

of Agriculture 

4 May-1990 Sep-1990 123 Desinventar 

5 Jun-1991 May-1992 335 Desinventar 

6 Nov-1993 Feb-1994 92 Desinventar 
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7 Jun-1994 Aug-1995 426 Desinventar 

8 Mar-1997 Aug-1998 518 Desinventar 

9 May-2000 Mar-2003 1034 Desinventar 

10 Oct-2009 Apr-2010 182 
Payano-

Almanzar 

11 Nov-2013 Sep-2014 304 
Payano-

Almanzar 

12 Apr-2015 Jan-2017 641 
Payano-

Almanzar 

13 Nov-2018 Mar-2019 120 GDACS 

 

3.1.2 Methodology 

As previously mentioned, in index insurance, payouts are triggered whenever measurable indices 

exceed predefined thresholds. Using machine learning, the rule that defines the issuance of a 

payout can be developed using past training sets of hazard and loss data (supervised learning). 

Conceptually, the development of a parametric trigger should correspond to an informed decision-

making process i.e., a process which, based on data, a-priori knowledge and an appropriate 

modelling framework, can lead to optimal decisions and effective actions. This work aims to 

leverage the aptitude of machine learning, particularly supervised learning algorithms, to support 

the decision-making process in the context of parametric risk transfer, applying NN and SVM for 

the identification of extreme weather events, namely flooding and drought for this particular study. 

Consider the occurrence of losses caused by a natural hazard on each time unit 𝑡 = 1, … , 𝑇 over a 

certain study area G, and let 𝐿𝑡 be a binary variable defined as 

 𝐿𝑡 = {
 0     if loss occurs on day t  𝑡
 1     if loss doesn't occurr on day t 

 (1) 

The aim is then to predict the occurrence of losses based on a set of explanatory variables obtained 

from non-linear transformations of a set of environmental variables. This hybrid approach aims to 

capture some of the physical processes of how the hazard creates damage by incorporating a priori 

expert knowledge on environmental processes and damage-inducing mechanisms for different 

hazards. Raw environmental variables are not always able to fully describe complex dynamics like 

flood induced damage, therefore, the usage of expert knowledge is important to provide the 

machine learning model with input data that are able to better characterize the natural hazard 

events. 

The models used for this task are set up such that they produce probabilistic predictions of loss 

rather than directly classifying events in a binary manner. This allows the parametric trigger to be 

optimized in a subsequent step, in a metrics-based, objective and transparent manner, by 

disentangling the construction of the model from the decision making regarding the definition of 

the payout-triggering threshold. Probabilistic outputs are also able to provide informative 

predictions of loss occurrence that convey uncertainty information, which can be useful for end 

users when a parametric model is operational (Figueiredo et al., 2018).  
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Figure 5: Flowchart summarizing the proposed methodology 

 

3.1.2.1 Data transformation 

Flood indicator 

Flood damage is not directly caused by rainfall, but from physical actions originated by water 

flowing and submerging assets usually located on land. As a result, even if floods are triggered by 

rainfall, a better predictor for the intensity of a flood and consequent occurrence of damage is 



SMART 

Final Report 

June 2021 

17 

warranted. To achieve this, we adopt a variable transformation to emulate, in a simplified manner, 

the physical processes behind the occurrence of flood damage due to rainfall, based on the 

approach proposed by (Figueiredo et al., 2018), which is now briefly described. Let 𝑋𝑡(𝑔𝑗) 

represent the rainfall amount accumulated over grid cell 𝑔𝑗  belonging to G on day t. Potential 

runoff is first estimated from daily rainfall. This corresponds to the amount of rainwater that is 

assumed to not infiltrate the soil and thus remain over the surface, and is given by 

𝑅𝑡(𝑔𝑗) = max{𝑋𝑡(𝑔𝑗) − 𝑢, 0} (2) 

where u is a constant parameter that represents the daily rate of infiltration. Overland flow 

accumulates the excess of rainfall over the surface of a hydrological catchment. This process is 

modelled using a weighted moving time average, which preserves the accumulation effect and 

allows the contribution of rainfall on previous days to be considered.  

The moving average is restricted to a three-day period. The potential runoff volume accumulated 

over cell 𝑔𝑗  over days  𝑡, 𝑡 − 1, 𝑡 − 2 is thus given by: 

𝑅𝑡
∗(𝑔𝑗) = 𝜃0𝑅𝑡(𝑔𝑗) +  𝜃1𝑅𝑡−1(𝑔𝑗) + 𝜃2𝑅𝑡−2(𝑔𝑗) (3) 

 

where 𝜃0, 𝜃1, 𝜃2, > 0 and 𝜃0, +𝜃1 + 𝜃2 = 1 

Finally, let 𝑌𝑡 be an explanatory variable representing potential flood intensity for day t, which is 

defined as: 

𝑌𝑡 = ∑
𝑅𝑡

∗(𝑔𝑗)
𝜆

− 1

𝜆

𝐽

𝑗=1

(4) 

 

The Box-Cox transformation provides a flexible, non-linear approach to convert runoff to potential 

damage for each grid cell, which is summed over all grid cells in a study area to obtain a daily 

index of flood intensity. In order to obtain the 𝑌𝑡 variable that best describes potential flood losses 

due to rainfall, the transformation parameters 𝑢, 𝜃1, 𝜃2 𝑎𝑛𝑑 𝜆 are optimised by fitting a logistic 

regression model to concurrent potential flood intensity and reported occurrences of losses caused 

by flood events, and maximising the likelihood using a quasi-Newton method: 

 
𝐿𝑡~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙(𝑝𝑡) (5) 

 

with 

 

log (
𝑝𝑡

1 − 𝑝𝑡
) = 𝛽0 + 𝛽1𝑌𝑡 (6) 

 

 

Drought indicator 

Lack of precipitation is the first indicator used to assess drought conditions. Precipitation deficit 

is quantified through the use of the Standardized Precipitation Index (SPI).  The SPI is one of the 
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most commonly employed drought indices all over the world, since it is recommended by the 

World Meteorological Organization to characterize meteorological drought, i.e. the drought that 

originates from a shortage in precipitation (WMO, 2012).  The SPI, developed in (McKee et al., 

1993) shows many advantages: it is based on precipitation only, is applicable in all climates and, 

being a standardized index, values of SPI for different climate regimes are comparable. However, 

SPI doesn't account for temperature, therefore the comparison of events with different temperature 

scenarios but the same SPI can be misleading (WMO and GWP, 2016). The SPI measures 

precipitation anomalies at a given location, based on a comparison of observed total precipitation 

amounts for an accumulation period of interest (e.g. 1, 3, 12, 48 months), with the long-term 

historic rainfall record for that period. The historic record is fitted to a probability distribution (the 

“gamma” distribution), which is then transformed into a normal distribution such that the mean 

SPI value for that location and period is zero (European Drought Observatory, 2020). Table 4 

reports the drought classification according to the SPI. 

 

Table 4: Drought Classification Based on SPI according to (McKee et al., 1993) 

Category SPI Probability (%) 

Extremely wet 2 and above 2.3 

Severely wet 1.5 to 1.99 4.4 

Moderately wet 1 to 1.49 9.2 

Near normal -0.99 to 0.99 68.2 

Moderately dry -1.49 to -1 9.2 

Severely dry -1.5 to -1.99 4.4 

Extremely dry -2 and below 2.3 

 

Because SPI values are in units of standard deviation from the long-term mean, the indicator can 

be used to compare precipitation anomalies for any geographic location and for any number of 

timescales. Note that the name of the indicator is usually modified to include the accumulation 

period. Thus, SPI-3 and SPI-12, for example, refer to accumulation periods of three and twelve 

months, respectively (European Drought Observatory, 2020).  

As was said before, the SPI is computed starting from rainfall. The six rainfall datasets presented 

in Table 1 have been used to retrieve SPI.  

 

3.1.2.2 Machine learning 

Machine learning is a subset of artificial intelligence whose main purpose is to give computers the 

possibility to learn, throughout a training process, without being explicitly programmed (Samuel, 

1959). It is possible to distinguish machine learning models based on the kind of algorithm that 

they implement and the type of task that they are required to solve. Algorithms may be divided 

into two broad groups: the ones using labelled data (Maini and Sabri, 2017)also known as 

supervised learning algorithms, and the ones that during the training receive only input data for 
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which the output variables are unknown (Ghahramani, 2004)also called unsupervised learning 

algorithms. 

A concern when using machine learning models is overfitting. This phenomenon takes place when 

a model starts overlearning from a specific set of data that is used to train the model, hindering the 

ability of such model to generalise to samples that are outside the domain of data the model were 

trained on.  

This section will focus on the machine learning algorithms adopted in this work, starting with a 

short introduction and description of their basic functioning, and next delving into the metrics used 

to evaluate the models are introduced and the reasoning behind their selection is highlighted. 

Lastly, will be explained the steps taken to fight overfitting. 

 

Neural network 

Neural networks are a machine learning algorithm composed by nodes (or neurons) that are 

typically organised into three types of layers: input, hidden and output. Once built, a neural 

network is used to understand and translate the underlying relationship between a set of input data 

(represented by the input layer) and the corresponding target (represented by the output layer). In 

recent years and with the advent of big data, neural networks have been increasingly used to 

efficiently solve many real-world problems, related for example with pattern recognition and 

classification of satellite images (Dreyfus, 2005) where the capacity of this algorithm to handle 

nonlinearity can be put to fruition (Stevens and Antiga, 2019). A key problem when applying 

neural networks is defining the number of hidden layers and hidden nodes. This must usually be 

done specifically for each application case, as there is no globally agreed-on procedure to derive 

the ideal configuration of the network architecture (Mas and Flores, 2008). Figure 6 displays the 

different parts composing a neural network and their interaction during the learning process. A 

neural network with multiple layers can be represented as a sequence of equations, where the 

output of a layer is the input of the following layer. Each equation is a linear transformation of the 

input data, multiplied by a weight (w) and the addition of a bias (b) to which a fixed nonlinear 

function is applied (also called activation function).  

 

𝑥1 = 𝑓(𝑤0𝑥0 + 𝑏0) 

 
𝑥2 = 𝑓(𝑤1𝑥1 + 𝑏1) (7) 

 

⋮ 
 

𝑦 = 𝑓(𝑤𝑛𝑥𝑛 + 𝑏𝑛) 

 

The goal of these equations is to diminish the difference between the predicted output and the real 

output. This is attained by minimising a so-called loss function through the fine tuning of the 

parameters of the model, the weights. The latter procedure is carried out by an optimiser, whose 

job is to update the weights of the network based on the error returned by the loss function. 

The iterative learning process can be summarised by the following steps: 

1. Start the network with random weights and bias,  

2. Pass the input data and obtain a prediction, 

3. Compare the prediction with the real output and compute the loss function, which is the 

function that the learning process is trying to minimise. 
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4. Backpropagate the error, updating each parameter through an optimiser according to the 

loss function. 

5. Iterate the previous step until the model is trained properly. This is achieved by stopping 

the training process when either the loss function is not decreasing anymore or when a 

monitored metric has stopped improving over a set amount of definition. 

 

 
Figure 6:  Learning process of a neural network (Stevens and Antiga, 2019) 

 

Support Vector Machine 

Support vector machine is a supervised learning algorithm used mainly for classification analysis. 

It constructs a hyperplane (or set of hyperplanes) defining a decision boundary between various 

data points representing observations in a multidimensional space. The aim is to create a 

hyperplane that separates the data on either side as homogeneously as possible. Among all possible 

hyperplanes, the one that creates the greatest separation between classes is selected. The support 

vectors are the points from each class that are the closest to the hyperplane (Wang, 2005). In 

parametric trigger modelling, as in many other real-world applications, the relationships between 

variables are non-linear. A key feature of this technique is its ability to efficiently map the 

observations into a higher dimension space by using the so-called kernel trick. As a result, a non-

linear relationship may be transformed into a linear one. A support vector machine can also be 

used to produce probabilistic predictions. This is achieved by using an appropriate method such as 

Platt scaling (Platt, 1999), which transforms its output into a probability distribution over classes 

by fitting a logistic regression model to a classifier’s scores. In this work, the support vector 



SMART 

Final Report 

June 2021 

21 

machine algorithm was implemented using the C-support vector classification (Boser et al., 1992) 

formulation implemented with the scikit-learn package in python (Pedregosa et al., 2011). Given 

training vectors 𝑥𝑖 ∈ 𝑅𝑖
𝑝 = 𝑖, … ,1 and a label vector 𝑦 ∈ {0,1}𝑛, this specific formulation is aimed 

at solving the following optimisation problem: 

min(𝑤, 𝑏, 𝜉) =
1

2
𝜔𝑡𝜔 + 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦1(𝜔𝑡𝛹(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖  (8) 

 

𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑙 
 

 

where ω and b are adjustable parameters of the function generating the decision boundary, 𝛹𝑖 is a 

function that projects 𝑥𝑖  into a higher dimensional space, 𝜉𝑖   is the slack variable and C > 0 is a 

regularisation parameter, which regulates the margin of the decision boundary allowing an 

increasing number of misclassifications for lower value of C and decreasing number of 

misclassifications for higher C (Figure 7).  

 

Figure 7: Decision boundary of support vector machine’s algorithm, with changing regularization 

parameter C. 
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3.1.2.3 Model construction 

The establishment of a robust chain of model construction is paramount when assembling the 

machine learning models. The algorithms presented in the previous section are built with several 

parameters, each with their own range of values. In order to find the parameters achieving the best 

performing model configuration we proposed a procedure that revolves around the following steps: 

1. Pre-processing of the data 

2. Selection of appropriate metrics evaluation 

3. Search of the optimal parameters for a given model 

 

3.1.2.4 Pre-processing of the data 

For the case at hand, the preprocessing operations were split into three categories: data partitioning, 

feature scaling and the adoption of resampling techniques aimed at dealing with class imbalance. 

The first two are crucial for the development of a valid model, while the latter is required when 

dealing with the classification of rare events. 

The partitioning of the dataset into training, validation and testing portions is fundamental to give 

the model the ability to learn from the data and avoid a problem often encountered in ML 

application: overfitting. This phenomenon takes place when a model starts overlearning from the 

training dataset, picking up patterns that belong solely to the specific set of data it is training on 

and that are not depictive of the real-world application at hand, making the model unable to 

generalize to sample outside this specific set of data. To avoid overfitting one should split the data 

into at least 2 parts (McClure, 2017). The training set, upon which the model will learn, and a 

validation dataset functioning as a counterpart during the training process of the model, where the 

losses obtained from the training set and those obtained from the validation set are compared to 

avoid overfitting. A further step would be to set aside a testing set of data that the model has never 

seen. Evaluating the performances of the model using data that it has never encountered before, is 

an excellent indicator of its ability to generalize. Thus, the splitting of the data is key to the 

validation of the model. In this work, the training of the NN was carried out splitting the dataset 

in 3 parts: training (60%), validation (15%) and testing (25%) set. During training, the neural 

networks used only the training set, evaluating the loss on the validation set at each iteration of the 

training process. After the training, the performance of the model was evaluated on the testing set 

that the model has never seen. Concerning the SVMs, a k-fold cross validation (Mosteller and 

Tukey, 1968) was used to validate the model, using 5 folds created by preserving the percentage 

of sample of each class, the algorithm was therefore trained on 80% of the data and its 

performances were evaluated on 20% of the remaining data that the model had never seen. 

Feature scaling is a procedure aimed at improving the quality of the data by scaling and 

normalizing numeric values so as to help the ML model in handling varying data in magnitude or 

unit (Aksoy and Haralick, 2001). The variables are usually rescaled to the [0, 1] range or to the 

[−1, 1] range or normalized subtracting the mean and dividing by the standard deviation. The 

scaling is carried on after the splitting of the data and is usually calibrated over the training data, 

and then, the testing set is scaled with the mean and variance of the training variables (Mueller and 

Massaron, 2016). 

Lastly, when undertaking a classification task, particular attention should be put on addressing 

class imbalance, which reflects an unequal distribution of classes within a dataset. Imbalance 
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means that the number of data points available for different classes is significantly different; if 

there are two classes, a balanced dataset would have approximately 50% points for each of the 

classes. For most machine learning techniques, little imbalance is not a problem, but when the 

class imbalance is high, e.g., 85% points for one class and 15% for the other, standard optimization 

criteria or performance measures may not be as effective as expected (Garcia et al., 2012). Extreme 

events are by definition rare, hence, the imbalance existing in the dataset should be addressed. One 

approach to address imbalances is using resampling techniques such as over-sampling (Lee et al., 

2008) and SMOTE (Chawla et al., 2002). Over-sampling is the process of up-sampling the 

minority class by randomly duplicating its elements. SMOTE (Synthetic Minority Over-sampling 

Technique) involves the synthetic generation of data looking at the feature space for the minority 

class data points and considering its k nearest neighbor where k is the desired number of synthetic 

generated data. Another possible approach to address imbalances is weight balancing, which 

restores balance in the data by altering the way the model "looks" at the under-represented class. 

Oversampling, SMOTE and class weight balancing were the resampling techniques deemed more 

appropriate to the scope of this work, namely, identifying events in the minority class. 

 

3.1.2.5 Evaluation metrics 

A reliable tool to objectively measure the differences between model outputs and observations is 

the confusion matrix. Table 5 shows a schematic confusion matrix for a binary classification case. 

 
Table 5: Confusion matrix 

Event predicted 

Event observed 

Yes No Total 

Yes a (True Positive) b (False Positive) a + b 

No c (False Negative) d (True Negative) c + d 

Total a + c b + d a + b + c + d = n 

 

When dealing with thousands of configurations and, for each configuration, with an associated 

range of possible threshold probabilities, it is impracticable to manually check a table or a graph 

for each setup of the model. Therefore, a numeric value, also called evaluation metric, is often 

employed to synthesise the information provided by the confusion matrix and describe the 

capability of a model (Hossin and Sulaiman, 2015). There are basic measures that are obtained 

from the predictions of the model for a single threshold value (i.e., value above which an event is 

considered to occur). These include the precision, sensitivity, specificity, and false alarm rate, 

which take into consideration only one row or column of the confusion matrix, thus overlooking 

other elements of the matrix (e.g., high precision may be achieved by a model that is predicting a 

high value of false negatives). Nonetheless, they are staples in the evaluation of binary 

classification, providing insightful information depending on the problem addressed. Accuracy 

and F1 score, on the other hand, are obtained by considering both directions of the confusion 

matrix, thus giving a score that incorporates both correct predictions and misclassifications. The 

accuracy is the ratio between the correct prediction over all the instances of the dataset, and is able 

to tell how often, overall, a model is correct. The F1 score is the harmonic mean of precision and 
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recall. In its general formulation derived from (Jones and Van Rijsbergen, 1976)’s effectiveness 

measure, one may define a 𝐹𝛽 score for any positive real β (Equation 9): 

 

𝐹𝛽 = 1 + 𝛽2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
(9) 

 

where β denotes the importance assigned to precision and sensitivity. In the F1 score both are 

considered to have the same weight. For values of β higher than one more significance is given to 

false negatives, while β lower than one puts attention on the false positive. The goodness of a 

model may also be assessed in broader terms with the aid of Receiver Operating Characteristic 

(ROC) and Precision-Sensitivity curves (PS). The ROC curve is widely employed and is obtained 

plotting the sensitivity against the false alarm rate over the range of possible trigger thresholds 

(Krzanowski and Hand, 2009). The PS curve, as the name suggests, is obtained plotting the 

precision against the sensitivity over the range of possible thresholds. For this work, the threshold 

corresponds to the range of probabilities between 0 and 1. These methods allow evaluating a model 

in terms of its overall performance over the range of probabilities, by calculating the so-called area 

under curve (AUC). It should be noted that both ROC curve and the accuracy metric should be 

used with caution when class imbalance is involved (Saito and Rehmsmeier, 2015) as having a 

large amount of true negative tends to result in low value of FPR (or 1- specificity). Table 6 

summarises the metrics described above used in this paper to evaluate model performances. 

 

Table 6: metrics used in the work 

Metric Equation 

Accuracy (a+d)/n 

Precision a/(a+b) 

Sensitivity (Recall) a/(a+c) 

False alarm rate b/(b+d) 

F1 score  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

AUC under the ROC curve  ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡
1

0
 

AUC under the PS curve  ∫ 𝑃𝑆(𝑡)𝑑𝑡
1

0
 

 

The best settings of the ML algorithms were selected based on the highest values of F1 score and 

area under the PS curve, the predictive performances of the models were compared to those of 

logistic regression (LR) models. The logistic regression adopted as a baseline takes as input 

multiple environmental variables, in line with the procedure followed for the ML methods and 

used a logit function (Equation 7) as link function, neglecting interaction and nonlinear effects 

amid predictors. The logistic regression is a more traditional statistical model whose application 

to index insurance has recently been proposed, and can be said to already represent in itself an 

improvement over common practice in the field (Calvet et al., 2017; Figueiredo et al., 2018). Thus, 

this comparison is able to provide an idea about the overall advantages of using a ML method. 
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3.1.2.6 Search for optimal model parameters 

In order to explore the domain of possible model configurations, for each ML method multiple 

key aspects were tested. Both methods shared an initial investigation of the sampling technique 

and the combination of input datasets to be fed into the models; all the data resampling techniques 

previously introduced were tested along with the data in their pristine condition where the model 

tries to overcome the class imbalance by itself. All the possible combinations of input dataset were 

tested starting from one dataset for SVM and with two datasets for NN up to the maximum number 

of environmental variables used. The latter procedure can be used to determine whether the 

addition of new information is beneficial to the predictive skill of the model and also to identify 

which datasets provide the most relevant information.  

 

Table 7: Summary of parameters used to derive the domain of model configurations 
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As previously discussed, these models present a multitude of customisable facets and parameters. 

For the support vector machine, the regularisation parameter C and the kernel type were the 

elements chosen as the changing parts of the algorithm. Five different values of C were adopted, 

starting from a soft margin of the decision boundary moving towards narrower margins, while 

three kinds of kernel functions were used to find the separating hyperplane: linear, polynomial and 

radial. The setup for a neural network is more complex and requires the involvement of more 

parameters, namely, the LF and the optimisers 360 concerning the training process, plus, the 

number of layers and nodes and the activation functions as key building blocks of the model 

architecture. Each of the aforementioned parameters can be chosen among a wide range of options; 

moreover, there is not a clear indication for the number of hidden layers or hidden nodes that 

should be used for a given problem. Thus, for the purpose of this study, the intention was to start 

from what was deemed the "standard" for the classification task for each of these parameters, 

deviating from these standard criteria towards more niche instances of the parameters trying to 

cover as much as possible of the entire domain. 

Table 7 summarise the range of parameters explored for both ML methods and both hazards. 

3.1.3 Results 

The results are presented in this section separating the two types of extreme events investigated, 

flood and drought. For each hazard, the results are presented by introducing at first the models 

achieving the highest value of the F1 score for a given configuration and threshold probability (i.e., 

a point in the ROC or precision-sensitivity space). Secondly, the best performing model 

configurations for the whole range of probabilities according to the AUC of the precision-

sensitivity curve are presented and discussed. The reasoning behind the selection of these metrics 

is discussed previously, in Section 3.1.2.5. As described in the same section, the performances of 

the ML algorithms are evaluated through a comparison with a LR model. 

3.1.3.1 Flood 

The flood case presented a strong challenge from the data point of view. Inspecting the historical 

catalogue of events, the case study reported 5516 days with no flood events occurring and 156 

days of flood, meaning approximately a 35:1 ratio of no event/event. This strong imbalance 

required the use of the data augmentation techniques presented in Section 3.1.2.4. The neural 

network settings returning the highest F1 score were given by the model using all ten datasets 

applying an over-sampling to the input data. The network architecture was made up of 9 hidden 

layers with the number of nodes for each layer as already described, activated by a ReLu function. 

The LF adopted was the binary cross entropy and the weights update was regulated by an Adam 

optimiser. The highest F1 score for the support vector machine was attained by the model 

configuration using an unweighted model taking advantage of all ten environmental variables with 

radial basis function as kernel type and a C parameter equal to (i.e., harder margin).  

Figure 8 shows the predictions of the three methods over the testing set (i.e., never seen by the 

model) in chronological order. A translation of Figure 8 into numeric values can be found in Table 

8. Overall, the two ML methods outperform decisively the logistic regression with a slightly higher 

F1 score for the neural network. 
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Figure 8:  Predictions of the three methods for the flood case 

 

Table 8: Metrics flood case 

Method Precision Sensitivity Specificity F1 score Accuracy 

NN 0.57 0.57 0.99 0.57 0.98 

SVM 0.63 0.49 0.99 0.55 0.98 

LR 0.46 0.42 0.99 0.43 0.97 

 

In Figure 9, panel (a) the highest F1 scores by method are reported in the precision-sensitivity 

space along with all the points belonging to the top 1% configurations according to F1 score. The 

separation between the ML methods and the logistic regression can be appreciated, particularly 

when looking at the emboldened dots in Figure 9a representing the highest F1 score for each 

method. Also, the plot highlights a denser cloud of orange points in the upper left corner and denser 

cloud of red points in the lower right corner attesting, on average, a higher sensitivity achieved by 

the NNs and a higher precision by the SVMs. Figure 9, panel (b), depicts the goodness of NN and 

SVM versus the LR model, showing how the F1 scores of the best-performing settings for each of 

the three methods vary by increasing the number of input datasets. This plot shows that the SVM 

and LR models have similar performances up to the second layer of soil moisture, while NN 

performs considerably better overall. The NN and the SVM as opposed to the LR, show an increase 

in the performances of the models with increasing information provided. The LR seems to plateau 

after 4 rainfall dataset and the improvements are minimal after the first layer of soil moisture is 

fed to the model. This would suggest, as expected, that the ML algorithms are better equipped to 

treat larger amounts of data.  

Figure 10 presents the best-performing configurations according to the area under the PS curve. 

For neural network, this configuration is the one that also contains the highest F1 score, whereas 

for support vector machine the optimal configuration shares the same feature of the one with the 

best F1 score with the exception of a softer decision boundary in the form of C equal to 100. The 

results reported in Figure 10 (a) and (b) about the best-performing configurations are further 

confirmation of the importance of picking the right compound measurement to evaluate the 
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predictive skill of a model. In fact, according to the metrics using the true negative in their 

computation (i.e.,  

 

Figure 9: (a): Performance evaluation for the flood case: (a) Performances of the top 1% 

configurations in the precision-sensitivity space highlighting the highest F1 score, (b): Comparison 

of ML methods with LR with combination using increasing number of input datasets. 

 

specificity, accuracy and ROC) , one may think that these models are rather good, and this deceitful 

behaviour is not scaled appropriately for very bad models. The aim of this work is to correctly 

identify a flood event rather than being correct when none occur, hence, overlooking the correct 

rejections seems reasonable. Panel (a) and (b) of Figure 10 shed a light on the inaccuracy of the 

ROC curve and the relative area under the curve (AUC). On the right are displayed the ROC 

curves, whilst on the left the PS curves of the ideal configurations for each method according to 

the highest AUC. The points in both curves represent a 0.01 increment in the trigger probability. 

The receiving operator curve indicates the NN as the worst model being the closest to the 45° line 

and having, along with SVM, a lower AUC with respect to the logistic model. This signal is 

strongly contradicted by other metrics and the precision-sensitivity curve, where the red dots are 

the closest to the upper-right corner where the perfect model resides. The behaviour of these curves 

is linked, once again, to the disparity in the classes. Additionally, looking at panel (a), all models 

are pretty distant from the always-positive classifier (i.e., a baseline independent from class 

distribution represented by the black hyperbole in bold) more appropriate as a baseline to beat than 

a random classifier (Flach and Kull, 2015). 
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Figure 10: Best-performing configurations for the flood case: (a) PS curve, (b) ROC curve, (c) 

Variation of true positive, false positive, true negative and F1 score for the range of probability in 

NN and (d) in SVM. 

 

Figure 11 portrays the properties of the top one-percent model configuration for both methods 

according to the area under the PS curve. Neural networks prefer the adoption of oversampling to 

enhance the input data and almost 60% of the configurations use a rectified linear unit function to 

activate its layer. Relative to the architecture of the network, a double peak can be observed at 8 

and 9 layers, where the best-performing configurations can be found but it is noticeable an even 

larger presence of model configuration with 3 and 4 layers. On the other hand, support vector 

machines use the highest value of the C-parameter, which is the one used by the configuration 

attaining the highest F1 score. A bigger divide can be observed amid the sampling technique and  
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Figure 11:  Properties of top 1% model configurations for the flood case. The stars denote the 

characteristics of the best-performing configurations according to the highest area under the 

precision-sensitivity curve. 
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the kernel function, where data input with no manipulation provided (i.e., Unw) is the most 

recurrent option occurring more than 40% of the time; similar percentage is attained by the radial 

basis function. 

3.1.3.2 Drought 

The data transformation for drought required the computation of the SPI from the precipitation 

data. The SPI was computed for different accumulation periods: Shorter accumulation periods (1-

3 months) detect immediate impacts of drought (on soil moisture and on agriculture), while longer 

accumulation periods (12 months) indicate reduced streamflow and reservoir levels. As shown in 

Table 9 models using SPI6 and SPI12 showed the best results and the values of the metrics are 

close to each other, thus, for brevity and in favour of clarity only one of the two is reported, namely, 

SPI over a six-month accumulation period.  

 

Table 9: NN and SVM metrics median value of the top 5% configuration according to F1 score 

 NN F1 Score SVM F1 Score 

SPI 1 0.8387 0.7709 

SPI 3 0.8454 0.8341 

SPI 6 0.9167 0.9317 

SPI 12 0.9524 0.9464 

 

Contrary to the flood case, the drought historical catalogue of events reported 1283 weeks with no 

droughts and 696 weeks of drought, with a ratio around 1.85 : 1 of no event/event. Albeit balanced, 

models with weights assigned were also investigated. The performances of the neural networks 

and the support vector machines were evaluated, like before, by a set of evaluation metrics and 

curves and a comparison against a logistic regression. It is important to point out that SPI is updated 

at weekly scale, same temporal resolution of the predictions, implying that each week counts as an 

event. Considering the duration of the drought in our historical catalogue of events (i.e., 17 weeks 

for the shortest one and 148 weeks for the longest), the temporal resolution adopted is an aspect to 

keep in mind when analysing the results obtained for these models. The highest F1 scores for the 

drought case were obtained for the NN model using all the datasets with weights for the classes. 

The network architecture was made up of 8 hidden layers with the relative number of nodes, 

activated by a ReLu function. The LF adopted was the binary cross entropy and the parameters 

update were regulated by an Adam optimiser. Regarding the SVM, the highest F1 score was 

achieved from the unweighted model using all ten environmental variables with radial basis 

function as kernel type and a C parameter equal to 100. 

As for the flood case, Figure 12 depicts the predictions over the testing set in a chronological order, 

and Table 10 summarises the performances of the models, showing that the ML algorithms are a 

strong improvement with due respect to the logistic regression, showing high values across all the 

prediction skill measurements. The NN results as the most accurate model, while the SVM is the 

more precise overall. The implementation of either model should take into account the job that 
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these models are required to take on. If the purpose of the model is to balance the occurrences of 

false alarms and missed events, the NN is preferable. For a task that would require a stronger focus 

on the minimisation of false positives (i.e. reduce the number of false alarms), the SVM should be 

used.  

 

 

Figure 12:  Predictions of the three methods for the drought case 

 

Table 10: Metrics for the drought case 

Method Precision Sensitivity Specificity F1 score Accuracy 

NN 0.95 1 0.99 0.97 0.99 

SVM 0.96 0.96 0.99 0.96 0.98 

LR 0.63 0.74 0.89 0.68 0.85 

 

 

Figure 13 remarks the distance between the ML methods and the logistics regression as well as 

echoes what is observed for flood that the points for NN gravitate towards the area of the plot with 

higher sensitivity value while the SVM points tend to stay on the precision side of the plot. The 

addition of further datasets is still beneficial to the performances of the ML methods as displayed 

by Fig. 12, panel (b). The increasing trend for both ML models starts to slow down from the fourth 

rainfall datasets onward, which might be due to the redundancy of the rainfall datasets. On the 

other hand, the addition of the layers of soil moisture improves the performances especially for the 

support vector machine, which keeps improving steadily reaching the highest value of F1 score 

when the whole set of information is fed to the model. 

Figure 14 refers to the best-performing configurations identified as the one with the highest area 

under the precision-sensitivity curve. The best configurations for either neural network and support 

vector machine are the ones containing the point with the highest F1 score, thus having the same 

features previously listed. The disparities between classes for drought are closer than those for 

flood, giving the accuracy, and the ROC curve, more reliability from a quality assessment point of 
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view. Looking at panels (a) and (b) of Fig. 13, both precision-sensitivity and. ROC curves show 

the ML methods decisively outperforming the no-skill and always-positive classifier. Furthermore, 

both plots exhibit a tendency of the neural network to group the points closer to each other towards 

the area containing the ideal model, which may indicate a more dependable prediction of the events 

as indicated by panel (c). In fact, while the two configurations have a high value of F1 score for a 

wide range of probabilities, the neural network has steadier prediction of true positive, false 

positive and false negative.  

 

 

Figure 13: Performance evaluation for the drought case: (a) Performances of the top 1% 

configurations in the precision-sensitivity space highlighting the highest F1 score, (b): Comparison 

of ML methods with LR with combination using increasing number of input datasets. 

 

This behaviour of the neural network could also be linked to the miscalibration of the confidence 

(i.e., distance between the probability returned by the model and the ground truth) associated with 

the predicted probability (Guo et al., 2017). The phenomenon arose with the advent of modern 

neural networks that employing several layers (i.e., tens and hundreds) and a multitude of nodes 

were able to improve the accuracy of their prediction while worsening the confidence of said 

prediction. Indeed, a miscalibrated neural network would return a probability that would not reflect 

the likelihood that the event will occur turning into a numeric output produced by the model. 

The features breakdown of the model configurations top one percent shown in Figure 15, shows 

that the best NN configurations are predominantly the ones using weight for the two classes, and 

the ReLu activation function. Also, a large number of models use a high number of layers in 

accordance with the configuration with the highest area under the PS curve. The fact that most of 

the configurations obtaining the best performances have deeper layers may be a confirmation of 

the miscalibration affecting the estimated probabilities. For the SVM models, Fig. 14 denotes a 

marked component of the models using harder margins (i.e., high values of C-par) and radial basis 

function as a kernel. 
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Figure 14: Best-performing configurations for the drought case: (a) PS curve, (b) ROC curve, (c) 

Variation of true positive, false positive, true negative and F1 score for the range of probability in 

NN and (d) in SVM. 

 

3.1.4 Discussion 

The machine learning framework presented merges a priori knowledge of the underlying physical 

processes of weather events with the ability of ML methods to efficiently exploit big data and can 

be used to support informed decision making regarding the selection of a model and the definition 

of a trigger threshold. Although several issues raised in this article warrant further research, there 

is clear potential in the application of machine algorithms to take advantage of increasing amounts 

of available environmental data within the context of weather index insurance.  
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Figure 15:  Properties of top 1% model configurations for the drought case. The stars denote the 

characteristics of the best-performing configurations according to the highest area under the 

precision-sensitivity curve. 
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The capability of these algorithms to reduce basis risk with respect to traditional methods could 

play a key role in the adoption of parametric insurance in the Dominican context and more 

generally for those countries that detain a low level of information about risk. Indeed, being able 

to rely on global data that are disentangled from the resources of a given territory, both from the 

point of view of climate data (e.g., lack of rain-gauge network) and from the point of view of 

information about past natural disasters, is an appealing feature of the work presented that would 

make the approach proposed feasible for other countries. The framework presented and topics 

discussed in this study provide a scientific basis for the development of robust and 

operationalizable ML-based parametric risk transfer products. 
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3.2 Prediction of milk production 

The dairy industry is prominent in the Dominican Republic, and it is often affected by extreme 

weather events, impacting the livelihoods of those sustained by the sector. Furthermore, the 

anticipated increase in temperature and humidity caused by climate change are directly linked to 

heat stress, which has been proved to be a threat to milk yield and the ability of cattle to reproduce 

(Deng et al., 2007; Garry et al., 2021). Hence, being able to predict with a certain amount of 

anticipation the production of milk could be helpful in the development of insurance products 

and/or early warning systems to aid farmers in developing countries cope with extreme natural 

events or future adverse climatic conditions.  

Recently, machine learning has gained popularity in the agricultural field for a variety of tasks. 

Several studies focus on crop yield prediction (Filippi et al., 2019; Johnson et al., 2016; Wang et 

al., 2018) which is dependent on different elements like weather, characteristics of the soil, 

irrigation schedule, irrigation technique, leveraging the ability of machine learning algorithms to 

handle large data and multiple input variables. Other research works exploit the ability of ML 

models to identify and recognize patterns in images to monitor specific crops, aiming to prevent 

the onset of diseases during the life-cycle of plants (Kim et al., 2006). Artificial intelligence has 

also provided advances related to livestock management and products, and more generally to the 

management of the resources usually used in a farm. For example, (Shine et al., 2018) tested 

several ML algorithms using milk production amid its input variables to predict monthly water 

and electricity consumption for 58 commercial dairy farms in Ireland. Another application closely 

related to milk production was conducted by (Caraviello et al., 2006) that used decision trees to 

identify which factors are the most influencing in the reproductive performances of lactating cows. 

(Grzesiak et al., 2006) test the ability of artificial neural networks (ANN) to predict daily milk 

yield from cows in production farms.  

 

This section presents the case study of milk production in the Dominican Republic, where deep 

neural networks, namely the Long Short-Term Memory (LSTM) and the Convolutional Neural 

Network (CNN), are employed to predict the monthly production of milk at country level. The 

selection of milk production as predictand of our models is justified by the interaction with the 

local partner, which highlighted the importance of the dairy sector both for the livelihood of 

farmers and the role that such product plays in the economy of the Dominican Republic.  

We first briefly introduce the functioning of the algorithms and the metrics used to evaluate the 

performances of the models. Then, a description of the dataset used to train the model is presented 

before delving into the results, where the predictive performances of the ML models are compared 

to an ARIMA model, used as a baseline. Finally, the main findings of this research and the 

implications they have for the Dominican context are discussed. 

 

3.2.1 Datasets 

The production of milk is governed by several factors ranging from climate conditions and types 

of pastures to the treatment and type of cattle. In the development of our machine learning models, 

we decided to focus on data related to climate, which is easier to obtain and is deemed appropriate 

in a country where most of the pastures are wild.  

It was possible to obtain reliable Dominican milk data at monthly scale only for a short period of 

time, spanning from 2009 to 2015. Considering the limited data at disposal, in order to develop 
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the model and establish a sound training of the ML algorithms we decided to leverage an important 

capacity of machine learning models, transfer learning. This technique is adopted mostly when 

developing deep learning models in the field of image classification and computer vision, where 

models trained on large, general datasets are re-purposed in another context for a second task. In 

the case of milk production, we trained the models on monthly time series of milk production 

obtained from the EUROSTAT database and re-purposed such models, taking advantage of the 

features learned in Europe, to perform the predictions on milk production in the Dominican 

Republic. 

3.2.1.1 Environmental variables 

The selection of the right input data is an important step towards the realization of reliable ML 

models. To build models able to predict the milk production, three environmental variables and 

one vegetation index were selected. The input datasets selected for the training of the ML 

algorithms were obtained from both reanalysis (precipitation, temperature, and relative humidity 

from ERA5) and satellite product (NDVI from NOAA) at monthly time scale. A summary of the 

characteristics of the variables selected can be found in Table 11.  

Table 11: Features of the environmental variables 

Variable Product Type Start date 
Spatial 

resolution 

Temporal 

resolution 
Latency 

NDVI 
NOAA STAR-

VHI 
Satellite 

1981- 

present 
4km 7 days 

Within 7 

days 

Precipitation ERA 5 Reanalysis 
1979- 

present 
0.25° 1h 

Within 5 

days 

Temperature ERA 5 Reanalysis 
1979- 

present 
0.25° 1h 

Within 5 

days 

Relative 

Humidity 
ERA 5 Reanalysis 

1979- 

present 
0.25° 1h 

Within 5 

days 

 

Precipitation data underwent a transformation as described in Section 3.1.2.1 to derive the standard 

precipitation index, useful to reproduce the occurrence of droughts. Relative humidity and 

temperature were used to derive the Temperature Humidity Index (THI) as described in (Deng et 

al., 2007): 

𝑇𝐻𝐼 = 𝑇𝐷 − (0.55 − (0.55 ∗ 𝑅𝐻)) ∗ (𝑇𝐷 − 58) (10) 

THI is a commonly used indicator of heat stress which, as already mentioned, has a strong 

influence on the capability of a cow to produce milk. 

3.2.1.2 Milk Production 

Retrieving reliable data regarding milk production is not always an easy task. The local data have 

a monthly time scale grouped at country level and with several periods of data not validated or 

missing. The longest period of reliable data related to the Dominican Republic is between 2009 

and 2015 and the time series is illustrated in Figure 16. This plot shows what seems to be an 
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increasing trend in the milk production country-wise as well as an interannual pattern. Both 

characteristics are good examples of problems that deep learning models used for time series 

prediction are well-equipped to handle. 

 

Figure 16: Time series milk production in the Dominican Republic 

The size of the dataset (i.e. 12 months x 7 years equal to 84 timesteps) available for the Dominican 

Republic was not believed appropriate to train a deep learning model. Therefore, we decided to 

exploit the ability of these models to transfer learning. The main idea is to train a ML model in a 

country and/or area where reliable data are available, so as to have the model learning features 

underlying the whole milk production process and not the features specifically related to a given 

country. For this task, we gather monthly data of milk production for countries belonging to the 

EU, which are openly available and updated monthly on the Eurostat data store website. The time 

span covered by the data, as shown in Figure 17, goes from 1968 to 2020 providing a sufficiently 

long and more reliable set of training data.  

 

3.2.2 Methodology 

The methodology proposed for the prediction of milk production follows a similar conceptual 

framework to the one described in Figure 5. The main idea is to use open quasi-global data, 

applying a priori knowledge by means of a data transformation (e.g., deriving the temperature 

humidity index as suggested in (Deng et al., 2007)) to augment the data and then train a machine 

learning model to perform, in this instance, a regression task. In this study we adopted two deep 

learning algorithms well-suited for regression problems: recurrent neural networks (RNN), 

specifically long short term memory (LSTM), and 1-dimensional convolutional neural networks 

(CNN1D). 
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Figure 17: Data availability in EU 

 

For the specific case of milk production in the Dominican Republic, finding reliable local data for 

an extended period of time was not feasible, therefore, we decided to tackle the problem by taking 

advantage of the ability of these models to transfer knowledge (Wang et al., 2018) by means of 

training the ML models with data coming from European countries, and then, using said model to 

validate the prediction of milk production in the Dominican Republic for the few reliable years of 

data available. 

  

3.2.2.1 Machine learning  

Long Short-Term Memory (LSTM) Recurrent Neural Networks 

Densely connected neural networks and convolutional neural networks have no memory (Chollet, 

2017) meaning that each input is processed independently. While this might not be an issue for 

tasks such as identification of events or object detection, when dealing with time series data, as in 

the case of milk production, keeping track of the information stored in the sequential nature of the 

data is crucial. To overcome the no-memory issue, we introduced recurrent neural networks 

(RNN). LSTM is a type of network belonging to the family of the RNN that is widely used due to 

its ability to overcome the problem of the vanishing gradient (Hochreiter and Schmidhuber, 1997). 

The structure of an LSTM model is based on two main components called states and gates. The 

former comprises the hidden state, which is responsible for storing the values of previous hidden 

states functioning as the memory of RNN, and the input states, which are a combination of the 

input data and previous hidden states. Regarding the latter, there are three types of gates in a LSTM 

architecture:  

- The forget gate, where the decision on whether the information of the current state is worth 

keeping or not is made. 

𝑓𝑡 =  𝜎(𝑊𝑓𝑥𝑥𝑡
+ 𝑊𝑓𝑠𝑠𝑡−1

+ 𝑏𝑓) 
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- The input gate, which is used to decide if the internal state should be used as a memory cell. 

  

𝑖𝑡 =  𝜎(𝑊𝑖𝑥𝑥𝑡
+ 𝑊𝑖𝑠𝑠𝑡−1

+ 𝑏𝑖) 

 

𝑐𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑥𝑡
+ 𝑊𝑐𝑠𝑠𝑡−1

+ 𝑏𝑐) 

𝐶𝑡 =  𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝑐𝑡 

 

- The output gate, which decides what the next hidden state should contain. 

 

𝑜𝑡 =  𝜎(𝑊𝑜𝑥𝑥𝑡
+ 𝑊𝑜𝑠𝑠𝑡−1

+ 𝑏𝑜) 

𝑠˜𝑡 =  𝑜𝑡 ∙ tanh (𝐶𝑡) 

 

where, 𝜎 denotes the sigmoid function,  𝑊𝑓𝑥
, 𝑊𝑓𝑠

, 𝑊𝑖𝑥
, 𝑊𝑖𝑠

, 𝑊𝑐𝑥
𝑊𝑐𝑠

, 𝑊𝑜𝑥
, 𝑊𝑜𝑠

, 𝑏𝑓, 𝑏𝑖, 𝑏𝑐, 𝑏𝑜 are the 

weights and biases used at different layers, respectively and 𝑠˜𝑡 denotes the output of LSTM 

network at time signal t. 

A schematic representation of an LSTM is depicted in Figure 18. 

 
Figure 18: Basic functioning of a LSTM cell 

 

Convolutional Neural Network (CNN1D) 

Traditionally, convolutional neural networks are used to process images, moving a 2-dimensional 

kernel over the images trying to extract features that allow them to recognise objects or reproduce 

patterns. This concept can be translated to time series using a 1-dimensional CNN, where instead 
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of a 2D kernel, a 1D window slides through the time series extracting features from the data as 

shown in Figure 19. 

The elements of the kernel are multiplied by the corresponding element of the time series. The 

sum of the product is then passed through a nonlinear activation function and the resulting value 

is stored in the new convolutional layer, whose length is equal to the number of convolutional 

kernels (i.e., the number of features the model is trying to extract from the initial time series). The 

values in the convolutional layer are later on pooled or flattened into a feature vector that is used 

as input to a regular fully connected layer that is ultimately in charge of making the prediction. 

One-dimensional CNNs are gathering much attention due to the possibility of having a larger 

kernel with respect to its 2D counterpart; usually, kernels for images use a 3x3 convolutional 

kernel, which in the 1D case can be easily extend to a convolutional window of size 7 or 9 (Chollet, 

2017). Furthermore, CNN are much faster computationally than recurrent neural networks due to 

the fact that the mechanism responsible for holding information of past states in the LSTM is not 

present in convolutional neural networks. 

 

 
Figure 19: Modelling framework for a 1D Convolutional Neural Network 

 

3.2.2.2 Data pre-processing 

Deep learning models do not train using the entire dataset at once, but rather splitting the dataset 

into smaller batches. For LSTM and CNN1D alike, when used with data where sequentiality plays 

a role (e.g., time series of milk production), these batches are a series of 3D tensors where the three 

dimensions (also called shape) are: number of samples (also called batch size), number of time 

steps and number of features. The samples are the number of 2D vectors with dimension 

(timesteps, features) present in the period of time the dataset covers. The number of timesteps is 

the time span we want the model to look at for each sample, while the features are the number of 

input variables used to predict the target variable (i.e., a univariate time series will have width 

equal to 1). Let’s take an example where a dataset is constructed from daily measurements of 

temperature and precipitation. The daily recordings of the two variables can be stored in a one-

dimensional vector of length 2 (i.e., number of features). Instead, an entire week of recording can 

be stored into a 2D tensor of shape (7,2), while an entire year of recordings could be stored in a 
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3D tensor of shape (52,7,2), where 52 is the number of weeks (samples) in a year for non-leap 

years. 

In the case of time series predictions, the number of timesteps is usually chosen as the time window  

that better describes the phenomenon we are trying to predict (e.g. looking at 2 years of hourly 

data to predict 1 hour in the future the price of Bitcoin might not be very useful). The length of the 

window can also be a parameter of the model that can be tuned. The division of the dataset into 

consecutive samples with a certain length is also referred to as data windowing. 

Another important aspect that regards the pre-processing of time series data is the creation and 

usage of the so-called lag features. Lag features are time series of the target variable at previous 

timesteps, thus, when the target variable is believed to depend on its previous values, it is common 

practice to leverage past information to create additional features able to improve the predictive 

capacity of the models.  

Lastly, pre-processing entails the splitting of the dataset at disposal into training, validation and 

testing of the data as already discussed for the classification problem in Section 3.1. This is 

essential to avoid overfitting of the model and to guarantee a proper training. The models in charge 

of predicting milk production were trained on 70% of the data available with 20% of the data used 

for validation during the training to avoid overfitting. The remaining 10% were used to check the 

ability of the models to generalise to a set of data that has never been seen. 

 

3.2.2.3 Model evaluation 

An important step in the pipeline of developing a machine learning model is the selection of 

appropriate metrics to evaluate model performances.  

 
Figure 20: Single-step-ahead prediction scheme. 

Source:https://www.tensorflow.org/tutorials/structured_data/time_series?hl=en 

https://www.tensorflow.org/tutorials/structured_data/time_series?hl=en
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For this case, three well known metrics for regression tasks were chosen to evaluate prediction 

quality: mean square error (MSE), mean absolute error (MAE) and the coefficient of determination 

(𝑅2). The mathematical formulations of these three metrics are: 

 

𝑀𝑆𝐸 =  
∑ (�̂�𝑘 − 𝑌𝑘)

2𝑛
𝑖=1

𝑛
 

𝑀𝐴𝐸 =  
∑ |�̂�𝑘 − 𝑌𝑘|𝑛

𝑖=1

𝑛
 

Where: 

• �̂�𝑘 is the vector of predicted values 

• 𝑌𝑘  is the vector of observed values 

 

𝑅2 = 1 − 
∑ (𝑦𝑘 − �̂�𝑘)2𝑛

𝑘=1

∑ (𝑦𝑘 − �̅�𝑘)2𝑛
𝑘=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

Where: 

• 𝑦𝑘  are the observation; 

• �̅�𝑘 is the mean of the observation; 

• �̂�𝑘 is the prediction of the model. 

 

 

There are two main types of prediction used in problems of time series forecasting: 

• Single-step-ahead (SSP) 

• Multi-step-ahead (MSP) 

As the names suggest, in the first case the model tries to predict a single time step in the future as 

displayed in Figure 20 (e.g., using past information to predict milk production for the next month).  

 

In the second case, the model predicts multiple time steps in the future as shown in Figure 21. 

There are different ways to perform a multi-step prediction (Bontempi et al., 2013); in this work 

we used the single-shot approach, where the model predicts the entire forecast horizon in one shot 

(e.g. model predicts the next 12 months all at once). 
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Figure 21: Multi-step-ahead prediction scheme. Source: 

https://www.tensorflow.org/tutorials/structured_data/time_series?hl=en 

 

3.2.3 Results  

The aim of this branch of research was to train deep learning models to predict milk yield. In order 

to evaluate the goodness of the performances of the ML algorithms we used the ARIMA model as 

a baseline. The presentation of the results is divided into two parts, first relative to SSP and then 

relative to MSP. Each algorithm presented was trained for different parameters, and both methods 

were tested using as input data all the combinations of the environmental variables and lagged 

milk production. Additionally, for the LSTM model, a range of values between 2 and 24 months 

was explored for length of the time window. This procedure resulted in a large number of model 

configurations. Here we will highlight the one showing the best results. 

Table 12: Comparison models trained in Europe 

Metrics 
Input 

variables 
Italy Germany France 

    ARIMA LSTM CNN1D ARIMA LSTM CNN1D ARIMA LSTM CNN1D 

MSE Lag Milk 2.23 0.273 0.113 0.09 0.13 0.052 0.095 0.083 0.023 

MAE Lag Milk 1.33 0.423 0.261 0.238 0.28 0.176 0.248 0.025 0.12 

R² Lag Milk -1.59 0.715 0.807 0.767 0.583 0.833 0.717 0.711 0.918 

 

 

An initial assessment of the performances of the LSTM and CNN1D models was carried out, for 

European countries, for which more data are available. Several countries were tested to develop 

the models; for the sake of brevity, Table 12 reports the comparison between the models run in 

Italy, Germany and France, the countries for which the models presented the best overall 

performances. 

 

https://www.tensorflow.org/tutorials/structured_data/time_series?hl=en
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Table 13: Comparison of CNN1D model results model trained in Europe vs model trained in 

Dominican Republic. 

Country of model training Dom. Republic Germany Italy France 

2nd-step training using local 

data 
n/a x  ✓ x  ✓ x  ✓ 

Performance metrics 

MSE 0.274 0.54 0.296 0.67 0.139 0.58 0.37 

MAE 0.39  0.54 0.371 0.64 0.288 0.63 0.405 

R2 0.612 0.56 0.76 0.456 0.887 0.53 0.701 

 

The metrics reported in the above table are the ones obtained from the testing set and it is already 

noticeable that for all three models the CNN1D model outperforms the LSTM and the ARIMA. 

Also, the best performing models for both ML algorithms are obtained using only the 1-month 

lagged milk as input, which hints towards the autoregressive nature of milk production. 

 

Once established the CNN1D as the best model for milk production, the models trained in the 

European countries were used to predict monthly values of milk in the Dominican Republic, using 

the period 2009-2014 as an additional training period and the year 2015 as the period upon which 

the performances of the model are evaluated. In addition, the European models were also directly 

applied to the Dominican data without any further training. A comparison of the results obtained 

can be found in Table 13. 

 

The CNN1D model trained in the Dominican Republic provides reasonable performances for the 

Dominican Republic even with the training over the short period of observations. Nonetheless, the 

models trained in Europe and then receiving additional training in the Dominican Republic provide 

a strong improvement with the very best being the Italian model, which exhibits small errors and 

a R² close to 0.9. The comparison of single-step-predictions over 2015 between the different 

models can be appreciated in Figure 22. 

 

Similarly to the SSP, for the multi-step-prediction counterpart, the models were first trained in an 

European country, and the best performing models were then used to perform a 12 month forecast 

in the Dominican Republic using the same split of the data as described for the SSP. Table 14 

reports the value of the metrics averaged over the 12 month forecast from January 2015 to 

December 2015 on DR milk production. Averaging the metrics over the entire window of the 

forecast was used to select the best model. 
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Figure 22: Single-step-prediction over the DR 

 

Table 14: Twelve months forecast over the French milk production time series 

Metrics DOM Germany Italy France 

Avg. MSE 1.89 0.625 0.578 0.616 

Avg. MAE 1.075 0.612 0.521 0.634 

 

In 2015, the Dominican Republic produced 655 million liters of milk. The error at yearly scale is 

estimated at about 122 millions liter that means around 18% error. This behavior might be expected 

since the model is trying to perform a forecast on a period of length equal to 25% of the training 

set, hence, the model might have difficulties in extracting enough information to make such a long 

prediction. Table 15 reports the monthly breakdown of the metrics between the Dominican model 

and the best-performing European model according to the average MSE, the Italian model. The 

monthly breakdown echoes the low predicting skills of the Dominican model already qualitatively 

assessed in Figure 23. An interesting outcome of the MSP results is the fact that the model 

improves its performances using THI alongside the lagged milk as predictors. 
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Figure 23: Comparison of the twelve months forecast for DR between the Dominican model and the 

European trained models. 

 

Table 15: Monthly breakdown of model metrics for the Dominican model and the Italian model (i.e., 

the best performing according to the averaged MSE and MAE) 

Month Dominican Republic Italy 

  MSE MAE MSE MAE 

1 4.64 2.15 2.36 1.54 

2 0.32 0.56 0.03 0.18 

3 1.02 1.01 0.29 0.54 

4 0.58 0.76 0.07 0.26 

5 0.07 0.26 0.003 0.05 

6 9.81 3.13 3.21 1.79 

7 1.9 1.38 0.64 0.79 

8 1.11 1.05 0.02 0.14 

9 0.64 0.8 0.16 0.4 

10 1.3 1.14 0.04 0.19 

11 0.28 0.58 0.001 0.004 

12 0.49 0.7 0.135 0.368 

 

3.2.4 Discussion  

In conclusion, the research on milk production showed the potentiality of these deep learning 

models in predicting time series. The results obtained by transferring the model trained in Europe 

to the Dominican Republic are a promising indicator of its applicability to other regions of the 

world. Moreover, specific to the Dominican context, an improvement in the data collection that 
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would lengthen the milk production time series would be beneficial in putting these models into 

operationalization, particularly for the multi-step predictions. Lastly, the autoregressive nature of 

the milk production time series along with the results obtained suggested that the prediction 

capability of the ML models are unaffected by environmental variables, which seems to be in 

contrast with what is discussed in the literature. The justification for this phenomenon might reside 

in the minimal information at disposal regarding the local treatment of cattle and farms when 

dealing with extreme events. In fact, based on local information, the impact of severe weather 

events like floods and droughts on milk production is mitigated by the government, who provides 

financial assistance to farmers that allows them to take adequate measures. For example, in case 

of a heat wave farmers might compensate for the hot weather with an increase in the watering of 

the cattle or with refrigerating systems in the farms. Naturally, this is not reflected by the climatic 

variables. Therefore, these activities are not modelled by the current framework, although they are 

responsible for keeping the milk production from having a drastic drop when an event occurs, 

justifying the low (or negative) influence of the climatic variables in the predicting performances 

of the deep learning models when used as input for the training. 
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3.3 Applicability of crop models in the context of parametric insurance 

Crop models simulate the growth process of a specific crop type. They are based on multiple 

equations that mimic the response of the crop to environmental and meteorological parameters, 

which are provided as input to the model. The final output of such models is the crop yield. The 

integration of these types of models into the design of parametric insurance programs is still at an 

early stage, as underlined in a recent research paper by (Afshar et al., 2021). Nevertheless, the 

same article highlights the potential that the innovative use of crop models has in reducing basis 

risk. Therefore, this is a highly relevant topic for the SMART project, which led us to carry out an 

exploratory study on the applicability of this type of model to support the design of parametric 

triggers. 

As mentioned previously, the construction of robust parametric triggers can help in making 

parametric insurance more appealing for final beneficiaries, such as farmers and their associations. 

In this context, crop models are particularly appealing because they are able to provide yield 

estimates at a finer scale with respect to the national one, depending on the spatial resolution of 

the input environmental and meteorological parameters. In principle, this allows calibrating 

parametric insurance policies based on the climatological and environmental conditions of 

different locations, and therefore tailoring them to specific end-users.  

In data sparse regions, such as the Dominican Republic, long time series (around 20 years) of 

meteorological parameters are sparse; therefore, the option of running crop models with gridded 

dataset should be carefully evaluated. Today there are different robust gridded datasets that can be 

exploited, as already shown in the previous sections of this report. An important step in deciding 

whether to use a specific gridded dataset is its validation. In this work, the performance of a crop 

model run with gridded data is compared with the ones of the same crop model run with station-

recorded data over the period for which such data are available. This step is the basis to evaluate 

the feasibility of using crop models to improve the design of parametric insurance policies. 

Crop models are sets of mathematical equations that provide quantitative knowledge on how a 

crop grows in interaction with its environment (Nassiri Mahallati, 2020). The models are based on 

mathematical algorithms that capture the quantitative information of agronomy and physiology 

experiments in such a way that can explain and predict crop growth and development together with 

yield, biomass, and water and nutrient uptake (Asseng et al., 2014). The input data include: 

1. Daily weather parameters (average, minimum and maximum temperature, rainfall, solar 

radiation, wind speed, relative humidity), 

2. Environmental parameters (soil characteristics and initial soil conditions), 

3. Crop parameters (crop type, planting date). 

Crop models, given their ability to simulate yield at different growth stages, can be a useful tool 

in the context of parametric insurance. Their application in designing insurance policies has 

recently received scientific attention. (Afshar et al., 2021) demonstrated that the accuracy of yield 

estimation carried on with the APSIM crop model, (described in (Keating et al., 2003)) combined 

with satellite information significantly outperformed models based solely on satellite vegetation 

indices and was consistent with existing research using crop models and satellite data for yield 

estimation in India. However, the accuracy of weather-yield relationships derived from crop 
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models is highly dependent on the quality of the underlying input weather data used to run them 

(Parkes et al., 2019). 

A major challenge in data sparse countries, such as the Dominican Republic, is the lack of 

sufficiently long time series (at least 20 years of data are required) of accessible and reliable 

meteorological datasets. Gridded weather datasets, derived from combinations of in-situ gauges, 

remote sensing, and climate models, provide a solution to fill this gap, and have been widely used 

to evaluate climate impacts on agriculture in data-scarce regions worldwide (Parkes et al., 2019). 

However, the reference datasets may be biased and contain uncertainties. Therefore, they may not 

be able to reproduce the local climate. Thus, it is necessary to assess the capability of crop models 

to produce reliable yield estimates when running with gridded data. 

This part of the study compares the yield estimates obtained running a crop model with gridded 

meteorological data as input and the ones obtained when the same crop model runs with station 

recorded data as input. The analysis is divided into three steps: 

1. Identification of crop harvested areas: areas in which a crop is grown are determined using the 

MAP Spam dataset. 

2. Yield computation: calculation of crop yield using a crop model, at first run with gridded data 

and then with station data. 

3. Comparison of the results. 

3.3.1 Datasets 

3.3.1.1 Identification of crop harvested area 

The MAP SPAM dataset was used to identify the crop harvested area. Map SPAM, the Spatial 

Production Allocation Model, uses a cross-entropy approach to make plausible estimates of crop 

distribution within disaggregated units (Yu et al., 2020). MAP SPAM relies on a collection of 

relevant spatially explicit input data, such as crop production statistics, cropland data, biophysical 

crop “suitability” assessments, population density, as well as any prior knowledge about the spatial 

distribution of specific crops or crop systems. SPAM provides harvested area for 42 crops. The 

used version is the 2.0, which has 2010 as reference year (International Food Policy Research 

Institute, 2019). SPAM provides gridded information at a spatial resolution of 10 km and has a 

global coverage. Therefore, the procedure described here to identify crop harvested area can easily 

be implemented in other countries. 

3.3.1.2 Meteorological variables 

Two sets of weather input parameters were considered: 

1. Station recorded weather parameters;   

2. Gridded weather data. 

Four automatic weather stations were considered (Figure 24). These stations were installed in the 

period between the end of 2016 and mid-2017, and three of them (Agua de Luis, Los Montones 

and Juliana Jaramillo) are still recording. For each station, the recording period reported in Table 

16 was considered to run the Aquacrop model. Table 16 also presents the stations’ main features, 
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namely their elevations and geographical coordinates. The considered weather variables were 

hourly rainfall, temperature, relative humidity, and extra-terrestrial and net solar radiation. 

 

Figure 24: Automatic weather stations included in the analysis. 

Table 16: Coordinates and elevation of the four considered weather stations 

Station Name Longitude Latitude Elevation (m) Recording period 

Agua de Luis -71.23 19.73 129 27/12/2016 to 03/05/2020 

Jumunuco -70.92 19.29 690 29/05/2017 to 22/10/2019 

Los Montones -70.73 19.14 717 23/05/2017 to 28/10/2020 

Juliana Jaramillo -71.61 19.78 10 30/08/2018 to 28/10/2020 

The same variables were extracted from the ERA-5 reanalysis gridded dataset for the period 

between 2017 and 2020.  ERA-5, already described in Table 1, has a 25km spatial resolution and 

global coverage. The dataset has already been used by (Afshar et al., 2021) to design parametric 

insurance policies since it has a short latency time (around 5 days). The blue grid cells shown in 

Figure 25 were considered in the analysis since they correspond to the automatic weather stations’ 

locations. 
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Figure 25: ERA-5 grid cells included in the analysis. 

 

3.3.1.3 Soil data 

Soil characteristics, such as soil texture and soil bulk density, which are necessary to run the 

AquaCrop model, were derived from the ISRIC soil data hub (World data center for Soils, 2010). 

ISRIC is the World Data Centre for Soils which, in collaboration with its partners, has been 

working for over 50 years on compiling and harmonising data on soils and their properties. The 

SoilGrids dataset, implemented by ISRIC, is a system for global digital soil mapping that uses 

state-of-the-art machine learning methods to map the spatial distribution of soil properties across 

the globe. SoilGrids is fitted using over 230000 soil profile observations. The outputs of SoilGrids 

are global soil property maps at six standard depth intervals (0-5cm, 5-15cm, 15-30cm, 30-60cm 

60-100cm and 100-200cm) at a spatial resolution of 250 meters. In this work the following 

SoilGrids parameters were used: bulk density, sand content, clay content, silt content, nitrogen and 

carbon content. The soil type was classified according to the USDA soil texture triangle (Soil 

Science Division Staff, 2017), based on the percentage of silt, clay and sand retrieved from the 

SoilGrids datasets. 
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Figure 26: Soil texture triangle (Soil Science Division Staff, 2017) 

 

3.3.2 Methodology 

3.3.2.1 Yield computation 

At first, a review of the available crop models was performed to select the most appropriate model 

for the study. The selected crop model was AquaCrop, developed by the Food and Agriculture 

Organization (FAO) to address food security and to assess the effect of environment and 

management on crop production (Food and Agriculture Organization, 2017). The AquaCrop model 

has previously been used in the Caribbean context: (Rankine et al., 2015) who applied the model 

in Jamaica to simulate sweet potato yield, and (Campo et al., 2017) describe how local farmers 

were trained to use AquaCrop in Trinidad and Tobago. AquaCrop simulates yield response to 

water of herbaceous crops and is particularly suited to address conditions where water is a key 

limiting factor in crop production (Food and Agriculture Organization, 2012). AquaCrop was 

developed in 2009 and has since been used worldwide in different agro-ecological conditions. The 

model, which is based on the relationships between crop yield and water described in (Steduto et 

al., 2012), was selected because it requires relatively few input parameters and can be run even in 

countries where information on soil properties and characteristics and crop variety are not detailed. 

Crop specific parameters already included in the Aquacrop model were used, while information 

on crop planting and harvesting dates were retrieved from crop calendars for the Dominican 

Republic (United States Department of Agriculture, 2008). 
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Figure 27: Dominican Republic crop calendar (United States Department of Agriculture, 2008). 

 

3.3.3 Results 

At first, a comparison between the weather variables extracted from stations and the ones derived 

from the ERA-5 dataset was performed. The Los Montones station was considered for illustration 

purposes, because it’s the station that recorded for the longest period. Figure 28 shows the time 

series of rainfall from ERA-5 and rainfall from the Los Montones automatic station. This station 

started recording from 23/05/2017; station recorded data are not available from November 2018 

to August 2019.  It can be observed that ERA-5 tends to overestimate precipitation with respect to 

the automatic station. 

 

Figure 28: Comparison between station recorded daily rainfall and ERA-5 daily rainfall. Los 

Montones station 
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Figure 29: Comparison between station recorded daily minimum temperature and ERA-5 daily 

minimum temperature. Los Montones station 

 

 

 

Figure 30:  Comparison between station recorded daily maximum temperature and ERA-5 daily 

maximum temperature. Los Montones station 

Figure 29 and Figure 30 show the comparison between minimum and maximum temperature 

retrieved from the Los Montones weather station and ERA-5. Overall, there is a good agreement 

between ERA-5 temperature estimates and station recorded temperature values. Minimum 

temperature recorded from the automatic station in the month of February 2018 significantly 

differs from the ERA-5 estimates; however, the station stopped recording immediately after this 

period and the values may be linked with a dysfunction in the sensor. 
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Figure 31:  Comparison between potential evapotranspiration computed with station recorded data 

and ERA-5 data. Los Montones station 

 

Potential evapotranspiration was computed according to the FAO Penman-Monteith method 

(Allen et al., 1998). Figure 31 shows the comparison between potential evapotranspiration 

computed with station recorded weather parameters and ERA-5 variables. The differences between 

the two series (ERA-5 reanalysis and station) are linked to the differences in rainfall estimates. In 

addition, the anomalous potential evapotranspiration values in February 2018 derive from the peak 

in the minimum temperature already discussed. 

The considerations regarding the comparison between data recorded from weather stations and 

reanalysis data expressed in the case of Los Montones station hold also for the other three 

automatic weather stations. 

After the comparison between weather variables from stations and ERA-5, the AquaCrop model 

was run. Rice was selected to perform the investigation since it is one of the major food crops 

grown in the country and is already implemented in AquaCrop. The attention on rice production 

in the Latin America context is high; for example, FAO has promoted the application of AquaCrop 

to estimate yield reduction in a climate change scenario in Colombia (Cortés B. et al., 2013). 

Rice harvested area in the Dominican Republic is shown in Figure 32. Rice is mainly cultivated in 

the Northern part of the country according to the information retrieved from the MAP SPAM 

dataset. 
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Figure 32: Rice harvested area, expressed as percentage of grid cell cultivated with rice. 

 

Two rice yields per year were considered, based on the crop calendar shown in Figure 4. The main 

yield is sown in January and harvested between May and June, while the second yield is planted 

between April and May and harvested around November. The simulations reported in Table 17 

were run. The simulations were selected according to the availability of meteorological input 

parameters from the automatic weather stations. 

 

Table 17: Simulations considered for rice 

Station Yield Year Yield Station (ton/ha) Yield ERA5 (ton/ha) 

Los Montones Second 2017 3.742 6.642 

Los Montones Second 2018 3.845 5.921 

Los Montones Second 2019 4.843 1.528 

Los Montones Second 2020 4.774 3.954 

Los Montones Main 2018 4.523 2.605 

Los Montones Main 2020 3.787 4.215 

Jumunuco Second 2017 2.181 6.676 

Jumunuco Second 2018 1.743 3.433 

Jumunuco Main 2018 9.168 8.814 

Agua de Luis Main 2017 1.883 4.126 

Agua de Luis Main 2018 0.423 0.164 

Agua de Luis Main 2019 0.076 0.136 
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Agua de Luis Main 2020 0.701 0.361 

Agua de Luis Second 2017 0.23 0.082 

Agua de Luis Second 2018 0.423 0.065 

Agua de Luis Second 2019 0 0 

Juliana Jaramillo Second 2018 2.613 1.53 

Juliana Jaramillo Main 2019 1.304 0.089 

Juliana Jaramillo Second 2019 0.117 0.063 

Juliana Jaramillo Main 2020 0.117 0.203 

 

The obtained results are promising. Figure 33 shows the relationship between rice yields computed 

running AquaCrop with station recorded data, which can be considered the most accurate estimate 

of yields that can be obtained at this resolution, and rice yield computed running AquaCrop with 

reanalysis data. The Pearson correlation coefficient, a measure of the strength of the relationship, 

is 0.779. The Pearson correlation coefficient ranges from -1 to 1, with -1 indicating a negative 

linear relationship among the parameters, 0 indicating the absence of a linear relationship between 

the parameters, and 1 indicating a positive linear relationship between the parameters. A Pearson 

correlation coefficient of 0.779 indicates the existence of a significant linear relationship between 

the yield computed with station data and the one computed with reanalysis data.  The existence of 

the positive relationship shows the possibility to obtain good rice yield estimates even in the 

absence of station recorded meteorological data. The reanalysis dataset ERA-5 can be used as a 

proxy for weather variables to compute yield. 

 

Figure 33: Comparison of results obtained running AquaCrop with station data and reanalysis data. 
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3.3.4 Discussion 

The application of crop models in the design of parametric insurance programs is promising. The 

AquaCrop model run with station recorded data produced rice yield estimates similar to those 

obtained when the same model is run with gridded data from the ERA-5 reanalysis. The Pearson 

correlation coefficient between the rice yield computed running AquaCrop with station recorded 

data and rice yield computed running AquaCrop with reanalysis data is 0.779, which indicates a 

significant linear relationship between the two variables. The result is of high importance since it 

demonstrates the feasibility of using the ERA-5 reanalysis dataset to run Aquacrop. ERA-5 has a 

global coverage and provides data on a gridded basis from 1979, thus allowing the application of 

the same methodology adopted in this study in other countries and in different time periods. The 

use of the AquaCrop, combined with reanalysis data, can enhance the capability of identifying 

significant yield losses. This suggests that the proposed methodology can be applied to design 

more robust triggers to determine the program payout. 
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4 Pathway to operationalization 

During the SMART project, significant effort was put into the potential future operationalization 

of the developed models. This was done along three main lines of action, which are described in 

this section. 

4.1 Outreach end engagement with Dominican stakeholders 

In close collaboration with the project’s local partner, Fundación REDDOM, several outreach and 

dissemination actions were carried out with a variety of local stakeholders. Moreover, our team 

also engaged directly with farmer’s associations in order to gather input and data that helped steer 

the project. Through these activities, significant interest on the SMART project has been garnered 

with local stakeholders; in addition, the methodological development was carried out according to 

local needs. This laid what we consider to be a strong foundation on which future 

operationalization may be achieved. Please refer to the following section (i.e. Monitoring and 

Evaluation) for a detailed description on these activities. 

4.2 Identification of potential improvements in the Dominican insurance institutional 

framework 

Another critical aspect that is required to support future operationalization of the project in the 

Dominican Republic is a good grasp on the local catastrophe insurance institutional context. This 

allows understanding the potential role that a new parametric insurance product can have in 

improving the existing system. As described in Section 2.2, the government supports the current 

risk management system directly and indirectly.  

 

Figure 34: Schematic representation of the current risk management system in place in the 

Dominican Republic. 

Although there may exist other specific cases, for the sake of simplicity here we refer to the 

situation where farmers are financed by the government. In this situation, reported in Figure 34: 
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• the farmers do not have all the financial resources to invest in farming and get a loan from 

the bank (Banco Agricola) at favourable conditions; 

• the bank receives insurance coverage for the loan and capital funds from the government; 

• the insurance company (Agrodosa) provides coverage for the loan and receives capital 

funds from the government (Ministry of Agriculture). 

In normal conditions, when no loss event occurs, the farmers get the crop yield and repay the loan 

that includes the interests and the embedded insurance premium. In case of a loss event, the farmers 

lose the investment and the crop yield. A loss adjuster is appointed to estimate the loss, and a few 

weeks later, he sends the report to the insurance company. The insurance company pays an 

indemnity to the bank to compensate for the lost loan. 

 

 

 

Figure 35:  Schematic representation of the current risk management system in place in the 

Dominican Republic when an event occurs. 

This system has several flaws: 

• the farmers are those who are taking the risk, but they are not empowered, nor do they 

get the proper profit from their enterprise; 

• the indemnity process is prolonged and frustrates recovery actions in the aftermath of 

an event; 

• the contribution of the government is not directed to the farmers but to the bank and 

the insurance company. 

 

The parametric insurance program developed in the SMART project enables a new risk 

management system. Besides the technical issues discussed in Section 3, a set of actions and 

agreements must be undertaken to operationalize the system. 

 

In the new configuration, each stakeholder should have a different role: 

• the farmers get a loan from the bank and a parametric insurance coverage from the 

insurance company; they invest the money in farming the crop; 

• the bank pays 25% - 50% of the insurance premium to the insurance company; 

• the government provides capital funds both to the bank and to the insurance company. 

In normal conditions, when no loss event occurs, the farmers get the crop yield and repay the loan 

to the bank and a portion of the premium (50% - 75%) to the insurance company. 
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Figure 36:  schematic representation of the proposed risk management system. 

In case of a loss event, the farmer receives a swift payout from the insurance company based on 

the parametric model. Thanks to these available financial resources, the farmers put in place 

actions to recover the crops and reduce the yield loss. Farmers repay the loan to the bank and a 

portion of the premium (50% - 75%) to the insurance company. 

 

 

Figure 37:  Schematic representation of the proposed risk management system in case of event. 

In this system, there are many innovations: 

1. Recognize the central role of the farmers: the new organization puts the farmer in the 

centre of the system;  

2. Payout Timing: by providing a payout soon after the event, there are several advantages. 

(a) Farmers have financial resources to recover the crops and possibly get some yield 
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(otherwise lost); (b) They can repay the loan; (c) The overall loss for the system is 

reduced. 

3. Raise awareness of the risk from natural hazards: the farmers will directly manage the 

natural hazard risk and take charges and profits from their actions and risk management 

strategy. 

 

4.3 Scalability 

A key feature of the methodologies proposed in the “Research and Development” section is their 

ease of scalability, i.e. the possibility to use them with an increasing number of meteorological and 

environmental data coming from different sources. In fact, the proposed methodologies can handle 

multiple types of input data and can be easily adjusted to exploit new products that are likely to 

become available in coming years. In addition, the proposed methodologies can in principle be 

easily transferable to other regions and/or countries.  

Regarding the methodology for the identification of flood and drought events described in Section 

3.1, because it is based on meteorological data from satellite and reanalysis products with global 

coverage, it can be transferred to other countries without the need to change input data. 

Furthermore, the catalogue of historical floods and droughts described in Section 3.1.1.2  was 

derived from international databases of natural disasters, which again have global coverage; 

therefore, historical event catalogues events may be developed to train models for other countries 

using the same approach. The selected databases also report hazards other than floods and 

droughts, meaning that they may be used in the development of analogous machine learning 

models for other hazards. Although different types of hazards naturally require different sets of 

input data, our model development framework streamlines the process of identifying the optimal 

set of data for each context, simplifying transferability. 

The framework introduced to predict milk production is based on the methodology proposed for 

the identification of extreme events, therefore, similar conclusions about the scalability of the 

model can be drawn. Additionally, the model developed for predicting milk production takes 

advantage of the capability of these algorithms to transfer learning, already providing concrete 

proof of its applicability to other contexts. Indeed, the model was built using globally available 

environmental and meteorological variables and has been trained on European milk data before 

providing excellent results in the Dominican Republic, showcasing once again the possibility of 

employing the algorithm in any other countries of the world, granted that monthly milk production 

data (i.e., the targets of our predictions) are available. The algorithm can also be scaled to predict 

crop production if appropriate input data are employed. 

Lastly, the methodology developed to apply crop models in the context of parametric insurance is 

again applicable in countries other than the Dominican Republic. The meteorological and 

environmental variables come from the already described ERA-5 reanalysis dataset, which has 

global coverage, while the datasets used to identify crop growing areas and parametrize soil 

features have global coverage. The AquaCrop model, developed by the Food and Agriculture 

Organization, has already been applied in many countries of the world. Thus, the methodology 

should be easily scalable and transferable to other regions and/or crop types. 
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4.4 Web app development and open-source code 

Our team is currently finalizing an interactive web app that illustrates some of the developed 

models. The platform aims to facilitate dissemination and understanding of the SMART project 

outcomes and highlight their potential in the Dominican context. The framework adopted for the 

development of the web app is Shiny (Chang et al., 2021), an R package that facilitates the build 

of interactive web apps thanks to its twofold flexibility: the wide range of customizable features 

aimed at creating the desired layout and the liberty to host the app on webpages and/or embed 

them into documents. 

The interpretation of the results coming from machine learning models is not always trivial and 

might require some specific knowledge on the topic. The main purpose of this app is to showcase 

the potential of the models developed during the project and facilitate the understanding of the 

results obtained by allowing the users to interactively “touch” these models. Depending on the 

user's final aim, navigating through the app might provide insightful information for decision 

makers as well as assistance to farmers interested in a parametric insurance product to protect its 

crop. 

The code used to create the web app together with the code used to train and develop the machine 

learning algorithms are provided as open-source software and can be found on Github at the 

following link: https://github.com/luigicesarini/SMART 

The web app will undergo a first testing period on the RStudio server at the following link: 

https://luigic.shinyapps.io/SMART/ 

 

Once the stability of the app is consolidated, our team is considering its migration to the local 

partner website (http://climared.com/). 

The layout of the app has been designed to have different sections, each related to a different topic 

addressed during the project. Clicking on the link, the user will be directed to the homepage where 

the aim of the project and the partners are described (Figure 38). 

 

 
Figure 38:  Homepage of the SMART web app 

https://github.com/luigicesarini/SMART
https://luigic.shinyapps.io/SMART/
http://climared.com/
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The other sections are designed to have a static welcoming page where information to the specific 

topic are provided along with in depth looks at results and references. The welcoming page is then 

linked to an interactive page where the user, through the graphical user interface, setting some 

parameters is able to look at different results. For example, Figure 39 shows the prediction of a 

flood event for the 17th of April 2007 together with the precipitation maps for that day for the four 

rainfall datasets used as input. 

 

 
Figure 39: Interactive page of the SMART web app 

 

The interactive app was built mainly to bring Dominican farmers and decision-makers closer to 

the topics of parametric insurance and machine learning, providing a simple and easy to use tool.    
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5 Monitoring and evaluation  

During the SMART project, in parallel with the research and development activities of state-of-

the-art models for parametric insurance, significant effort was put on their potential future 

operationalization in the Dominican Republic. In order to report back to donors and provide an 

objective basis to evaluate the success of the project in terms of fostering operationalization, in 

this document we provide a discussion related with the applicable monitoring and evaluation 

criteria, as agreed with the GFDRR. These monitoring and evaluation criteria are being delivered 

ahead of the project’s final report, as requested by the GFDRR. The contents of this document will 

also be present in the final report. 

 a. Forming or strengthening local partnerships 

At the core of the SMART project and its potential future operationalization is the partnership 

established between the project team members. In particular, Fundación REDDOM, the local 

project partner, is a Dominican non-governmental, non-profit organization that promotes 

sustainable development through the introduction of associative, technical and entrepreneurial 

innovation. Its team has specific expertise in the design, implementation, and evaluation of 

development projects, including climate resilience and adaptation measures, access to financial 

markets for farmers, and food security. REDDOM plays a central role in the agricultural sector in 

the Dominican Republic, promoting sustainable rural development by identifying competitive 

solutions and managing innovative resources and processes based on dialogue with community 

actors. REDDOM establishes collaborative relationships between the private sector, international 

cooperation, local government, universities, non-governmental organizations, and multinational 

corporations to facilitate economic growth. 

The direct involvement of REDDOM is therefore key to providing a bridge between model 

development, implementation, and on-the-ground operationalization for any potential insurance 

product for the agricultural sector. REDDOM’s wide network of contacts is the optimal basis upon 

which partnerships between local stakeholders, final beneficiaries, and/or foreign institutions can 

be established, and it is through such partnerships that the access to and use of disaster risk 

financing innovations in the Dominican Republic can be promoted. Thus, from its inception, the 

SMART project aimed to establish a robust pathway for future operationalization leveraging on 

REDDOM’s pivotal role within the Dominican context. In this regard, REDDOM already has 

numerous well-established and ongoing partnerships with some of the most relevant stakeholders 

and possible end-users from the agricultural sector for potential weather index insurance products. 

Therefore, concerning local partnerships that can contribute towards future implementation of the 

developed models, SMART focused its efforts on 1) strengthening existing partnerships between 

REDDOM and relevant local stakeholders, and 2) fostering the creation and/or strengthening of 

partnerships among those stakeholders. 

Throughout its duration, REDDOM presented SMART and its objectives to a range of Dominican 

stakeholders, and there was general interest in the project. Several farmers associations 

representing different crops were involved in the development of SMART, namely 

ADOBANANO (bananas), CONACADO (cocoa) and FEDEGANORTE (milk). In addition, other 

11 farmers associations were contacted and provided input and/or data that supported the 

development of the project (Bloque Cacao Hato Mayor, ASOPROCON, BANELINO, FIKSAR/ 
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BANANO, Grupo Banamiel, JAD, EKOBAN, Asociación de Ganaderos Villa Los Almácigos, 

Asociación de Ganaderos Juancito Fermín, Asociación de Ganaderos Dajabon, Asociación de 

Ganaderos Partido). 

Likewise, REDDOM held meetings with several organizations to discuss the potential use of 

machine learning tools - as developed by the project - for strengthening both risk transfer 

mechanisms - i.e. agricultural insurance - and climate-smart decision-making in the agricultural 

sector. These organizations and Dominican government entities include the following: DIGERA 

(General Directorate of Agricultural Risks), AGRODOSA (agricultural insurer company), 

Ministry of Agriculture, Ministry of Environment, ONAMET (National Weather Office), INDHRI 

(National Instituto of Water Resources –in charge of irrigation channels throughout the country), 

ISA University (local university focused in agriculture) and MEPyD (Ministry of Economy, 

Planning and Development). In particular, AGRODOSA and DIGERA see great potential in using 

these tools to evaluate risk, improve insurance policies and provide a more accurate and cost-

efficient service to farmers. Similarly, the Ministry of Agriculture’s planning department envisions 

the use of these tools to integrate climate risks management into their annual plans. 

These activities allowed not only better adjusting SMART to the local context through information 

and data provided directly by local stakeholders, but also disseminating the project among such 

stakeholders, which is a critical first step towards future operationalization. Through these 

activities, we consider that existing partnerships between REDDOM and local stakeholders have 

been reinforced, especially in the context of a possible future implementation of a parametric 

insurance product. 

In addition, the most important milestone of SMART in terms of promoting its outcomes and 

fostering local partnerships was the project workshop that took place on 5 March 2021. This 

workshop, which we had envisaged from the beginning of the project, was planned to physically 

take place in the Dominican Republic but had to instead be organized as a virtual workshop due to 

the ongoing COVID-19 pandemic. Nevertheless, even in this format, we consider that the 

workshop was highly productive. Stakeholders from different sectors with whom REDDOM 

interacted during the SMART project were invited. The workshop was attended by the participants 

shown in Table 1. 

Table 18: List of participants in the SMART workshop 

Role Participant name Institution 

SMART project team 

Jeffery Perez 

Fundación REDDOM 
Luis Tolentino 

Emilin Sena 

Nidia de los Santos 

Mario Martina 

University School for Advanced 

Studies IUSS Pavia 

Rui Figueiredo 

Luigi Cesarini 

Beatrice Monteleone 
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Dominican Republic government 

ministries 

Juan Mancebo 

Ministry of Agriculture, 

Directorate of Risk Management 

and Climate Change 

Kenia Amarilis 

Ministry of Environment 

Kirverlin Valera 

Maria Ramos 

Mary Galan 

Zoreydi Medina 

Miguel Montero 
Ministry of Economy, Planning 

and Development 

Dominican Republic 

governmental institutions 

Miriam Matos 
National Weather Bureau 

(ONAMET) 

Quisqueia Perez 
Dominican Coffee Institute 

(INDOCAFE) 

Kioris Alcantara 
National Institute for Forest and 

Agriculture Research (IDIAF) 

Farmers association Judelka Reyes 

FEDEGANO (Dairy Farmers 

Federation of the Northwest 

Region, in representation of 44 

smaller associations) 

Insurance Miguel Marrero 
AGRODOSA (Agriculture 

Insurance Company) 

 

The workshop was organized into three parts. In the first part, each participant presented 

himself/herself and described the institution he/she represents. In the second part, REDDOM 

delivered a presentation in Spanish to the audience. This presentation included a description of the 

Challenge Fund, the SMART consortium, and the project goals. It then went on to provide general 

information about parametric insurance, artificial intelligence, and how machine learning may be 

used to improve models and better manage climate risks. Finally, a selection of results was shown. 

The presentation was delivered in a flexible and interactive manner, which allowed several 

interesting questions by the audience to be addressed as the presentation progressed. The 

presentation slides will be provided as an attachment to the final report. 
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Figure 40: Some snapshots of the project workshop 

Lastly, the third part of the workshop consisted in a roundtable discussion among all the 

participants, with the moderation of REDDOM. During this discussion, several stakeholders 

showed significant interest in the implementation of index insurance to the Dominican agricultural 

sector and in the outcomes of the SMART project. Moreover, different aspects of the Dominican 

agricultural reality were discussed. Overall, we consider that the workshop met its objectives 

entirely, having exceeded our initial expectations: all participant stakeholders are now well 

informed about the project, and the groundwork for future partnerships and for operationalization 

has been laid. 

b. Co-development/refinement of the risk financing innovation with beneficiaries 

As mentioned in the previous point, different potential beneficiaries of a weather index insurance 

product (e.g., farmers and farmers associations related with cocoa, bananas, and dairy) were 

involved in the development of the parametric insurance framework. Their inputs and data 

provided played a key role in deciding which crops and which regions to focus on during model 

development.  Further refinement of the models together with the target beneficiaries is feasible, 

but pertinent only within a subsequent stage of model implementation closer to actual 

operationalization. 

c. Developing or supporting local champion(s) 

The SMART local partner, Fundación REDDOM, was involved in the development of the machine 

learning models that can be used to support innovative index insurance products for the Dominican 

agricultural sector. Given its unique positioning at the intersection of 1) specific technical expertise 

on the SMART project and on the developed models, and 2) its wide network of contacts and well-

established partnerships with many of the relevant stakeholders, REDDOM will naturally be the 

main local champion that enable further dissemination and access of the innovation to potential 

users. 

In addition, the Dominican farmers’ organizations are also expected to play a central role 

championing SMART in the context of a possible future operationalization, since they are in 
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principle able to establish a bridge between farmers and institutional stakeholders. For example, 

FEDEGANO, which represent 44 dairy farmers’ associations of the northwest region of the 

Dominican Republic, participated and was actively engaged in the project workshop. It is now 

well informed about the project, and in the context of a subsequent stage of operationalization it is 

expected to play a key role in disseminating and promoting the innovative index-based insurance 

solution among its associates. Based on the experience of this workshop, we believe that a similar 

level of engagement with associations representing other crops and regions is possible and likely. 

d. Training of local beneficiaries 

REDDOM participated in the co-development of the models and its team and is therefore 

knowledgeable on most of the project’s technical components. Regarding potential beneficiaries, 

a significant amount of information regarding index-based insurance and the SMART project was 

provided during the project workshop. This workshop served partly as a dissemination action and 

partly a training action, where participants apprehended a number of core concepts that are 

necessary to understand the project and how it can be beneficial for users and the Dominican 

agricultural sector. Additional, more specific training is feasible at a subsequent stage of 

implementation and operationalization. It is also worth noting that our team is also finalizing an 

interactive web app that aims to facilitate dissemination and understanding of the SMART project 

outcomes. 

 e.  Cash or in-kind leverage toward further access or use of the developed risk financing 

innovation 

The SMART team is available and willing to continue supporting the project for a transitory period 

after the end of the contract towards potential operationalization in the Dominican Republic, as 

well as to explore the possibility of applying and/scaling the models to other contexts. 

  

f.  Using information on gender gaps relevant to your risk financing innovation to try to close 

those gaps 

Not applicable, given the scope of the project. 

  

To conclude, we consider that SMART has established a clear pathway to operationalization from 

both a technical and a practical viewpoint, and that all the conditions are in place to achieve the 

intended implementation of project outcomes through local partnerships and collaborations. 
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