NOTE FOR THE READER OR PRESENTER:

Talking points and additional resources are in the "notes" section of each slide

Bold text highlights main points that should be read aloud, while non-bold text provides additional supporting information

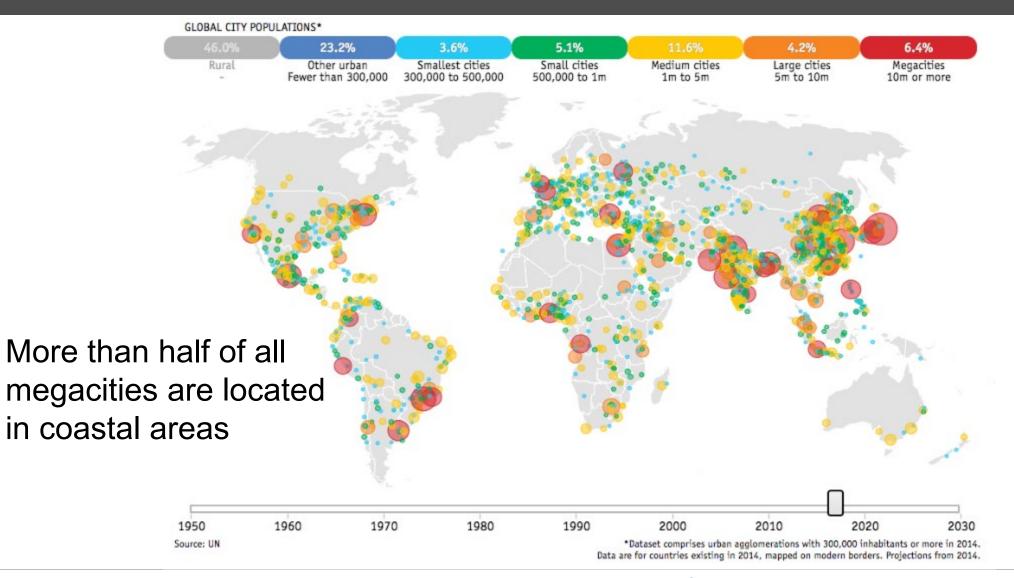
NATURE-BASED SOLUTIONS FOR DISASTER RISK MANAGEMENT Coastal Flooding and Erosion Protection

Photo credit: flickr/ Northshore school of art

MANY TERMS FOR "NATURE-BASED SOLUTIONS"

Source: Cohen-Shacham et al. 2016; UNEP et al. 2014; EC 2015; Lo 2016; WWF 2017; USACE n.d.; EcoShape 2018; WBCSD 2017

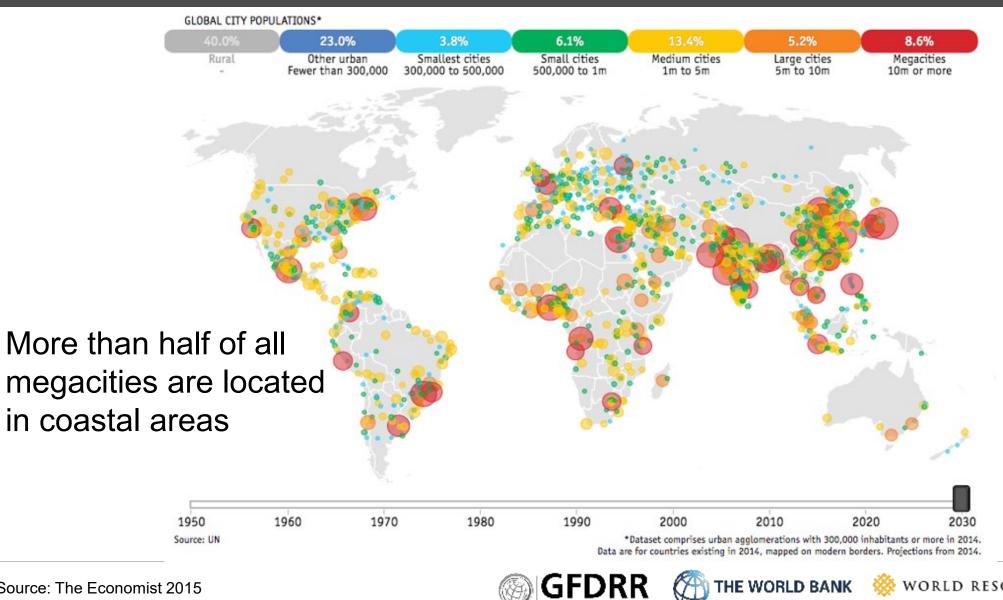
🛞 WORLD RESOURCES INSTITUTE


COASTAL REGIONS

- Represent 9% of global land area
- House 28% of the global population (1.9 billion people)
- Produce 42% of global GDP

WORLD BANK GROUP SWORLD RESOURCES INSTITUTE

URBANIZATION: 2018



THE WORLD BANK

WORLD RESOURCES INSTITUTE

URBANIZATION: 2030

THE WORLD BANK

FLOODING AND EROSION ARE TWO IMPORTANT HAZARDS FACING COASTAL COMMUNITIES

Contributing factors:

- Development decisions
- Ecosystem degradation
- Sea level rise
- Changing weather patterns
- Natural disasters

THE WORLD BANK

COSTLY CONSEQUENCES

US\$6 billion per year lost globally from flooding in major coastal cities

In the US alone, erosion affects more than 40% of coastlines, resulting in ~US\$500 million/yr in coastal property losses

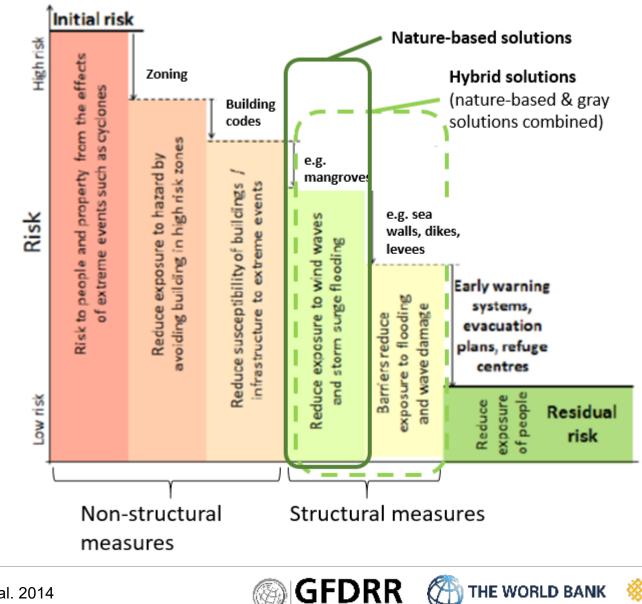
Source: Hallegatte et al. 2013; NOAA 2016 Photo credit: Flickr/ Oregon Sea Grant

THE WORLD BAN

WORLD RESOURCES INSTITUTE

WORLD BANK INVESTMENT PORTFOLIO: DISASTER RISK MANAGEMENT (DRM)

Invested ~US\$49 billion (FY2012-2017) in more than 600 DRM projects globally


61 projects have targeted coastal flooding with around US\$3.78 billion committed

123 projects have targeted **coastal erosion** with US\$20.4 billion in committed

COASTAL RISK REDUCTION MEASURES INCLUDE NBS

STRUCTURAL STRATEGIES

Nature-based Solutions (NBS)

Natural

Creation, protection or restoration of only ecosystem elements for addressing development objectives

Hybrid

Combination of ecosystem elements and hard engineering interventions for addressing development objectives

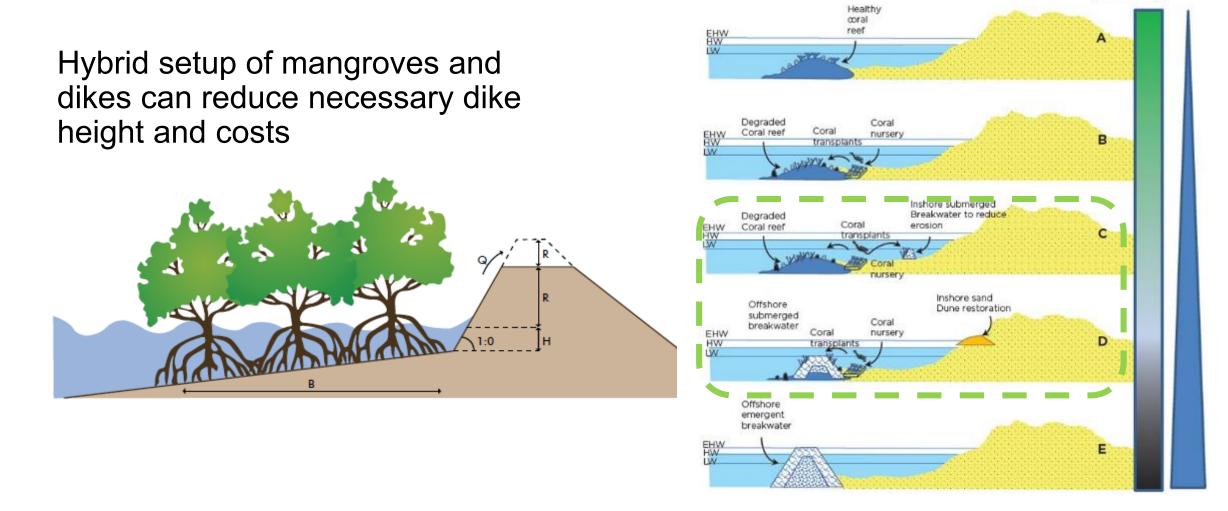
Built

Hard, gray, engineered structures built to address development objectives

CONVENTIONAL: 'BUILT' INFRASTRUCTURE

Coastal solutions include:

- Offshore breakwaters
- Dikes
- Seawalls
- Groins
- Concrete or rock embankments


NBS: 'NATURAL' INFRASTRUCTURE

Ecosystems include:

- Mangroves
- Coral reefs
- Oyster beds and reefs
- Seagrasses
- Sandy beaches and dunes
- Coastal marshlands and other wetlands

'HYBRID' INFRASTRUCTURE

Cost

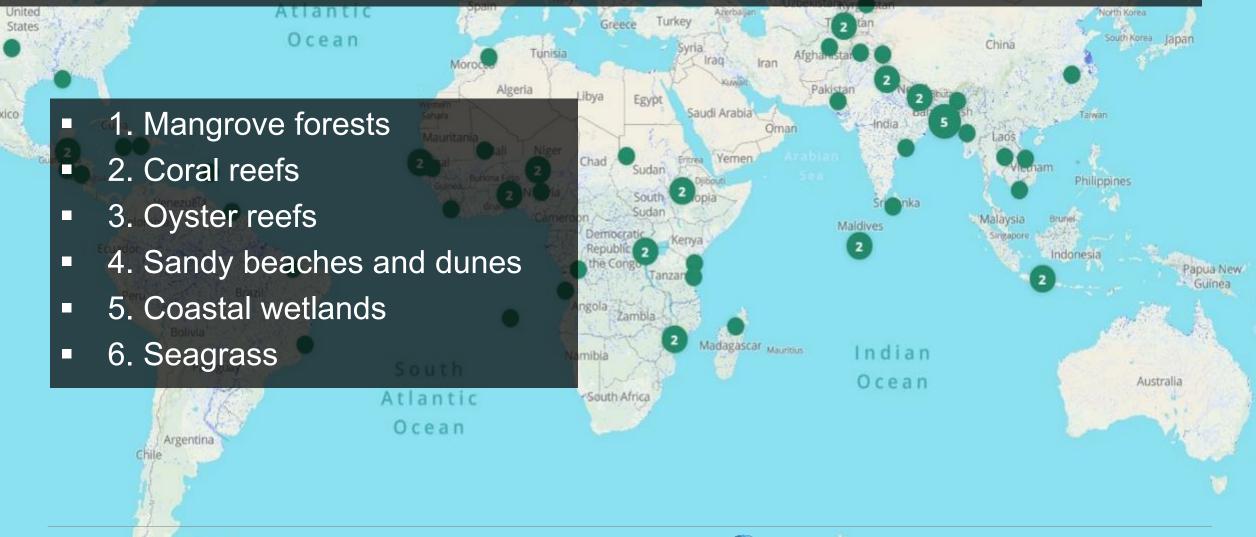
(\$)

Naturalness

(Green to Gray)

ADVANTAGES OF NATURE-BASED SOLUTIONS

- Can be more cost-effective
- Able to adapt and regenerate
- Provide wide range of additional cobenefits beyond flooding and erosion protection


WORDS OF CAUTION

Appropriate use of NBS is highly context specific, requiring careful evaluation, planning and design of project components

WORLD BANK GROUP SWORLD RESOURCES INSTITUTE

NBS FOR COASTAL FLOODING AND EROSION PROTECTION

Source: World Bank https://naturebasedsolutions.org/

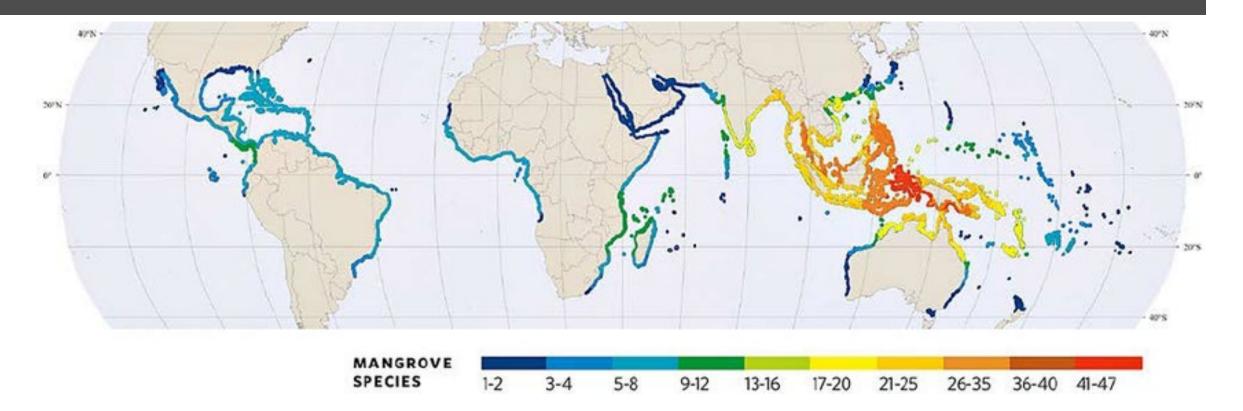
GFDRR (THE WORLD BANK

🋞 WORLD RESOURCES INSTITUTE

1. MANGROVE FORESTS

Star In

Mangroves are species of trees and shrubs that live in coastal intertidal zones with low-oxygen soils and slowmoving waters


Approaches for implementation include:

Conserving existing mangroves

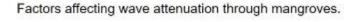
XE

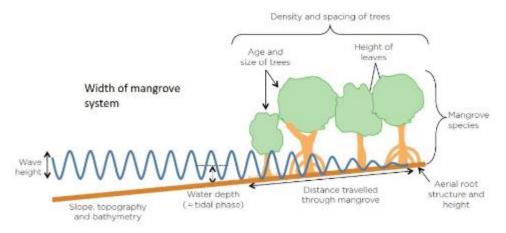
- Enabling conditions for natural regeneration
- Planting new mangrove forests

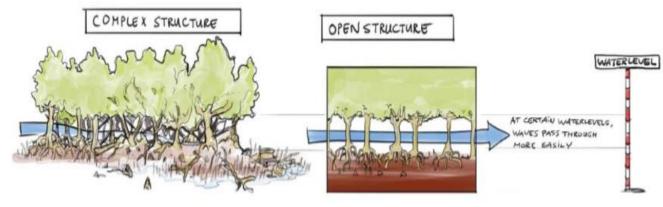
MANGROVE DISTRIBUTION AND NUMBER OF SPECIES

70 species of mangroves grow in tropic and sub-tropical latitudes and approximately
123 countries and territories

Graphic credit: US Dept. of Commerce 2014 Sources: McOwen et al. 2016; Kathiresan and Bingham 2001




THE WORLD BANK



RISK REDUCTION BENEFITS

- Wave attenuation: speed and crest height reduction
- Sediment trapping: shoreline stability and expansion, and soil elevation

Mangroves are estimated to reduce wave heights by an average of 31%

ADDITIONAL BENEFITS

Valuable forest products

BOY AND ALASSE " A REAL

- Tourism and recreation
- Fisheries

GFD

- Water purification
- Carbon sequestration

WORLD BANK GROUP SWORLD RESOURCES IN STIL

Biodiversity

CONSIDERATIONS FOR USING MANGROVES AS COASTAL DEFENSE

- Integrate with other risk reduction measures
- Incorporate valuation results into coastal planning and management decisions
- Prevent conversion and maintain wide forests to extent possible
- Leverage natural regeneration processes by restoring biophysical and social conditions
- Follow and mimic nature in species selection and location if planting

Natural regeneration can occur in 15-30 years

Sources: Spalding et al. 2014; Deltares 2016 Photo credit: Flickr/PNUD Panama

WHAT DO MANGROVES COST?

Mangrove restoration can be 2-5x cheaper than submerged breakwaters for equivalent wave heights up to half a meter

Median mangrove restoration cost estimate value is ~US\$9,000/hectare

Photo credit: Flickr/David Copeland Sources: IFRC n.d.; Deltares 2016; Bayraktarove et al. 2015

ORLD BANK GROU

WORLD RESOURCES INSTITUTE

DISASTER RISK MANAGEMENT WITH MANGROVE PLANTATION IN VIETNAM

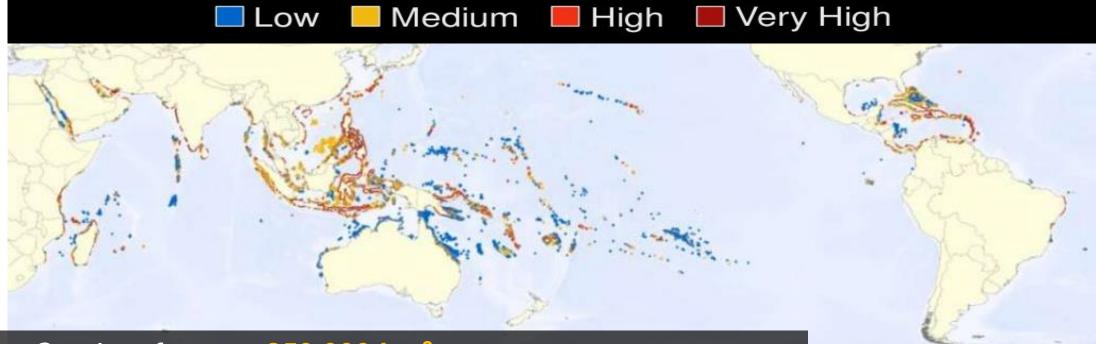
THE WORLD BANK

WORLD RESOURCES INSTITUTE

2. CORAL REEFS

Coral reefs are **limestone-like physical structures** built up in tropical waters from deposits made by ~800 species of reefbuilding corals and other algae organisms

Approaches for implementation include:


GFDF

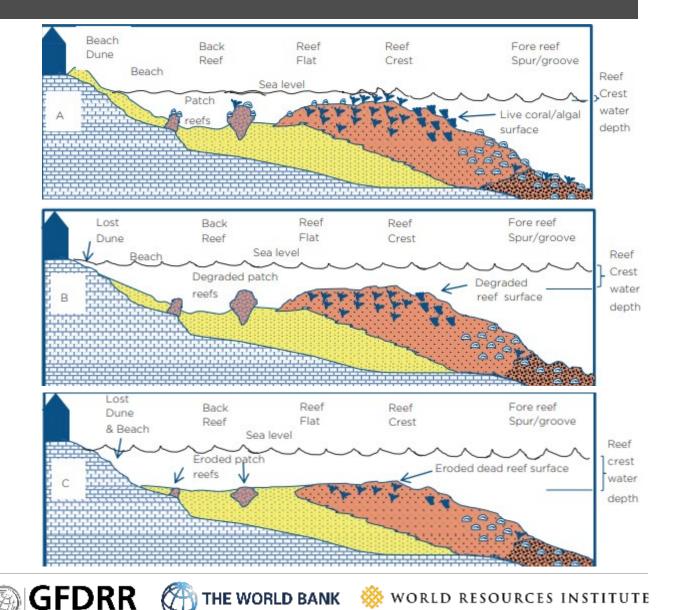
Conserving integrity of existing reefs
 Repairing reef structural integrity (width/height)
 Recovering the coral species diversity and structure, transplanting from farms or donor sites
 Using nature-based artificial material structures—e.g., reef balls, bio-rock, eco-reefs

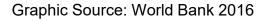
Photo credit: Flickr/Éric Baker Source: Paulay 1997; Burke et al. 201′

WORLD BANK GROUP SWORLD RESOURCES INSTITUTE

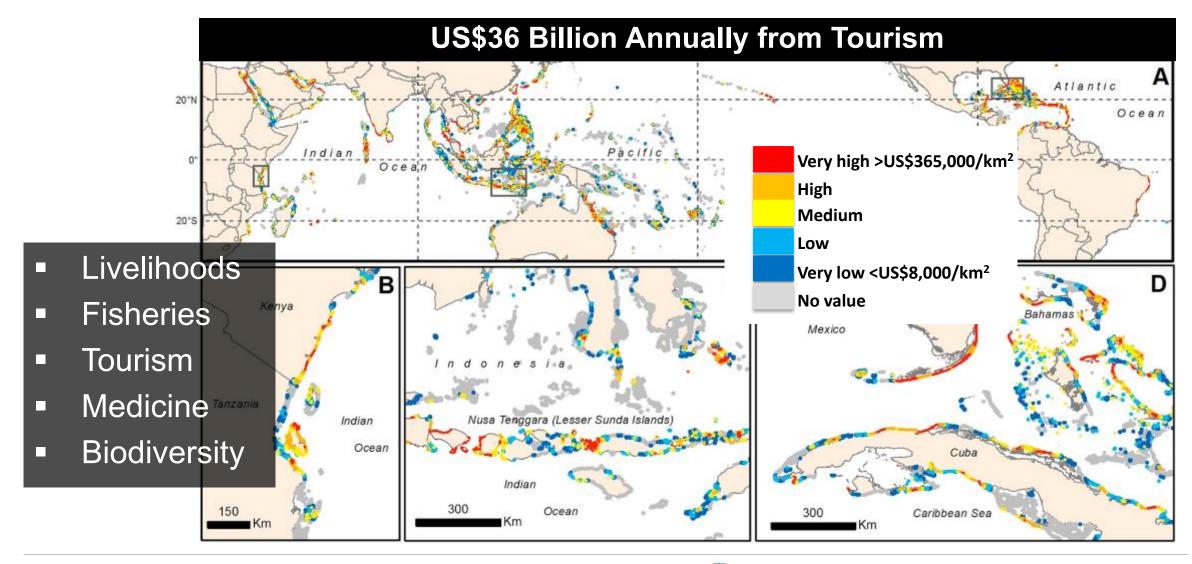
CORAL REEFS OF THE WORLD CLASSIFIED BY LOCAL THREAT LEVEL

- Coral reefs cover 250,000 km²
- 75% are threatened by local human activities (e.g., overfishing, pollution) and global climate-related stressors combined





RISK REDUCTION BENEFITS


- Mitigate wave energy, diminishing speed and crest height
- Reduce associated erosion and wave-induced flooding

Coral reefs are estimated to reduce wave heights by an avg. 70% and wave energy by 75-95%

ADDITIONAL BENEFITS

THE WORLD BANK

CONSIDERATIONS FOR USING CORAL REEFS AS COASTAL DEFENSE

GFDRR

WORLD BANK GROUP SW WORLD RESOURCES INSTITUTE

- Effectively manage and protect existing reefs
 Integrate coral restoration with other structural and non-structural risk reduction strategies
 Incorporate valuation results into coastal planning
- and management decisions
- Reduce local and global threats

Corals can take 3-8 years to reach sexual maturity

WHAT DO CORAL REEFS COST?

Median cost of restoring coral reefs is estimated to be ~US\$165,600 per hectare

Cost of structural restoration measures can be significantly less expensive than building tropical breakwaters

Graphic Credit: World Bank 2016

Source: Bayraktarove et al. 2015

() WORLD BANK GROUP S WORLD RESOURCES INSTITUTE

DISASTER RISK MANAGEMENT WITH CORAL REEF RESTORATION IN BELIZE

- Objective: build on artificial reef creation successes to strengthen climate resilience, reduce flooding and erosion
 Cost: US\$300,000 for coral activities out of US\$6 million project budget
- Expected outcome: reefs will help decrease overall wave action

3. OYSTER REEFS AND BEDS (REEFS)

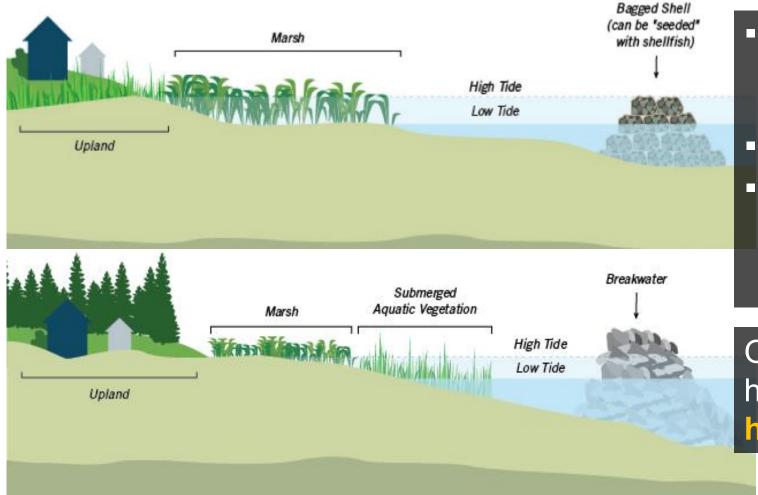
Oyster reefs are intertidal or subtidal dense colonies of both living and dead oyster structures formed in brackish or marine waters

Approaches for implementation include:

- Conserving integrity of existing reefs
- Restoring natural reefs
- Constructing new reef structures at former historic reef sites

GFDRR (world bank group & world resources institute

Photo credit: Flickr/Bas Kers


GLOBAL CONDITION OF OYSTER REEFS IN BAYS AND ECOREGIONS

THE WORLD BANK

RISK REDUCTION BENEFITS

GFDRR

- Protect adjacent habitats with risk reduction properties
- Reduce wave energy
- Enhance shoreline stability, expansion and elevation

Oyster reefs in Alabama have reduced wave heights on average 53-91%

WORLD BANK GROUP

ADDITIONAL BENEFITS

- Livelihoods
- Fisheries
- Water quality
- **Biodiversity**

CONSIDERATIONS FOR USING OYSTER REEFS AS COASTAL DEFENSE

- Effectively manage and protect existing reefs
- Integrate reef restoration planning with other risk reduction strategies
 Understand local site context for best site selection and restoration design
 Incorporate valuation results into coastal planning and management decisions

Oysters reach sexual maturity in 1 year

GFDRR (world BANK GROUP & world resource

WHAT DO OYSTER REEFS COST?

Costs of reef restoration measures have been found to be significantly less expensive than building tropical breakwaters

Median oyster reef restoration cost estimate value is ~US\$66,900/hectare

Photo: Sarah Hall-Kirchner / Macdill Airforce Base Source: Bayraktarove et al. 2015

DISASTER RISK MANAGEMENT WITH OYSTER REEF RESTORATION IN THE GULF OF MEXICO

5.9 kilometers of restored oyster reefs in Mobile Bay, Alabama has:

- Reduced wave height and energy: the average and top 10% of waves by 53-91% and 76-99%, respectively
- Produced marine food supply: 3,100kg of finfish, crab and 3,460 kg of oyster meat/yr
 Purified water: removing 1,888 kg of nitrogen/yr from surrounding nearshore waters

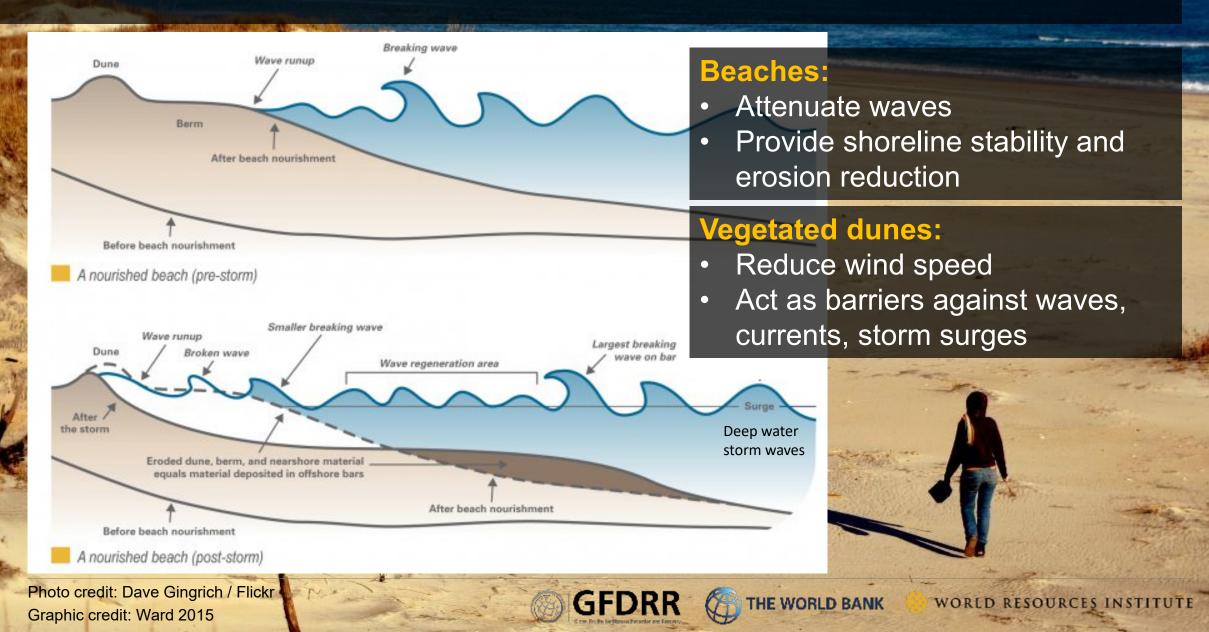
4. SANDY BEACHES AND VEGETATED DUNES

Sandy beaches and dunes occur at all latitudes, **covering ~34-40%** of ice-free coastline

Approaches for implementation include:

- Beach nourishment or replenishment through artificial replacement of sand to grow shoreline
- Replenishing and protecting integrity of existing sand dunes

WORLD RESOURCES


THE WORLD BANK

Constructing new sand dunes

GEDRR

Photo: W & J / Flickr Source: Schwartz 2006

RISK REDUCTION BENEFITS

ADDITIONAL BENEFITS

- Tourism and recreation
- Groundwater storage and supply
- Biodiversity and wildlife

IE WORLD BANK

WORLD RESOURCES INSTITUTI

GFDRR

CONSIDERATIONS FOR USING SAND NOURISHMENT AND VEGETATED DUNES AS COASTAL DEFENSE

- Regional distinctions and site characteristics
 Integrity of artificial dunes vs. preserving and reinforcing existing dunes
- Different design vulnerabilities under same storm and wave characteristics
- Incorporate valuation results into coastal planning and management decisions

Nourishment can be required every 3-5 years

WHAT DO BEACHES AND DUNES COST?

Cost of **beach nourishment** has been found between **US\$2,000-5,000/linear ft.** and **vegetated dunes US\$.03k-5,000/linear ft.**

Cost of constructing a **tropical breakwater per linear foot** is estimated to be **US\$5,000-10,000**

Photo: draconianimages / pixabay Source: Cunniff and Schwartz 2015; NRDA 2012

THE WORLD BANK

WORLD RESOURCES INSTITUTE

DISASTER RISK MANAGEMENT WITH MEGA-SAND NOURISHMENT IN THE NETHERLANDS

21.5 million m³ of sand deposited to build resilient shoreline as first line of defense

Cost: €70 million for nourishment operation

 Expected outcome: fewer nourishment operations required over a 20-year time horizon, dune reinforcement, and less disturbance of coastal ecosystem

Photo: Flickr/Anthony Tong Lee Source: Rijkswaterstaat 2013; Tall et al. 2016

THE WORLD BANK

2011

WORLD RESOURCES INSTITUTE

2014

5. COASTAL WETLANDS

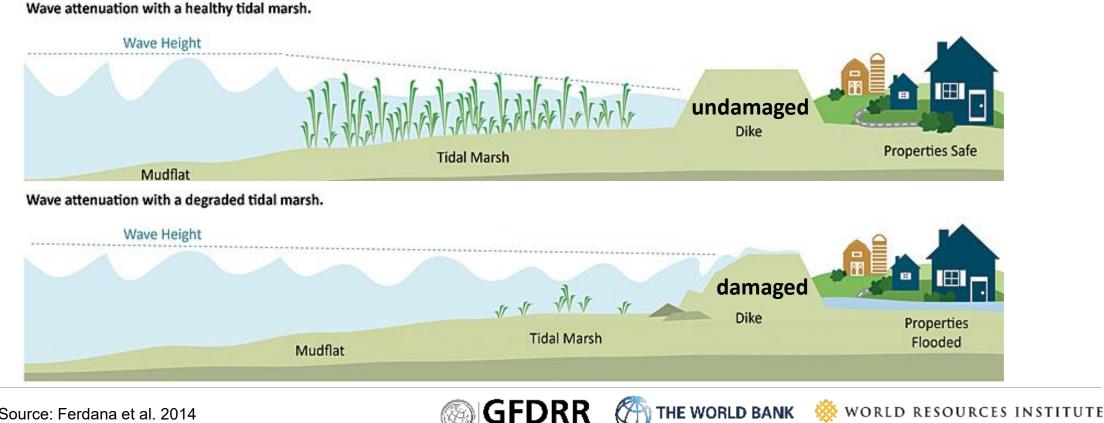
Salt marshes are located in the intertidal zone of sheltered marine and estuarine coastlines, commonly found at temperate and high latitudes, and comprise salt-tolerant plants like herbs, grasses and shrubs

Approaches for implementation include:

WORLD BANK GROUP SWORLD RESOURCES IN ST

- Conserving existing marshes
- Rehabilitating a degraded marsh
- Re-establishing a destroyed marsh

GLOBAL DISTRIBUTION OF COASTAL WETLANDS



THE WORLD BANK

RISK REDUCTION BENEFITS

- **Sediment stabilization** facilitated by root systems Wave energy dissipation and
 - attenuation

Salt marshes are estimated to reduce **non-storm wave heights** by an avg. of 72% and wave energy by up to 60%

Graphic Source: Ferdana et al. 2014

ADDITIONAL BENEFITS

CONSIDERATIONS FOR USING WETLANDS AS COASTAL DEFENSE

- Adaptive nature can keep pace with sea level rise and recover from weather events
- Integrated coastal management strategies
- Focus on local species with preferable vegetation characteristics
- Incorporate valuation results into coastal planning and management decisions

WORLD BANK GROUP 👹 WORLD RESOURCES INSTITU

WHAT DO COASTAL WETLANDS COST?

Wetland restoration can be 2-5x cheaper than submerged breakwaters for equivalent wave heights up to half a meter

Median salt marsh restoration cost estimate value is ~USS\$67,100/hectare

Photo credit: Flickr/ Chesapeake Bay Program Source: Narayan et al. 2016; Bayraktarove et al. 2015

(P) WORLD BANK GROUP 🔆 WORLD RESOURCES INSTITUTE

DISASTER RISK MANAGEMENT WITH SALT MARSH RESTORATION IN NARRAGANSETT BAY

- 200 acres under restoration
- Expected outcome: Improving tidal flow, water quality, and reinvigorating high and low marsh plants to restore ecosystem services and adaptive protective benefits

WORLD RESOURCES

THE WORLD BANK

6. SEAGRASS BEDS

Seagrasses are dominant forms of shallow sub-tidal vegetation found across the world, from tropical to arctic latitudes

Approaches for implementation include:

- Protecting existing seagrass beds
- Enabling water quality and protective conditions for natural regeneration
- Transplanting or broadcasting seeds from laboratories or plants from donor sites

GLOBAL DISTRIBUTION OF SEAGRASS

Graphic source: UNEP 2017 Source: Short et al. 2007

THE WORLD BANK

🋞 WORLD RESOURCES INSTITUTE

RISK REDUCTION BENEFITS

ALC: NO. OF THE OWNER.

 Wave attenuation
 Shoreline stabilization through sediment retention and deposition

Mangrove Coral Polyps Lagoon Reef Flat Seagras Seagrasses are estimated to reduce wave heights by an average of 36%

Photo credit: Flickr/budak Graphic credit: Guannel et al 2016

WORLD BANK GROUP SWORLD RESOURCES IN STITUTE

ADDITIONAL BENEFITS

- Livelihoods
- Fisheries
- Water quality
- Carbon sequestration
- Biodiversity

Seagrass provide an estimated US\$1.9 trillion/yr in the form of nutrient cycling

GFDRR 🖉

CONSIDERATIONS FOR USING SEAGRASS AS COASTAL DEFENSE

- Susceptibility to sea level rise
- Enhanced risk mitigation when combined with other ecosystem strategies
- Targeted value for high-frequency, smaller scale events
- Incorporate valuation results into coastal planning and management decisions

WORLD BANK GROUP 🔆 WORLD RESOURCES

WHAT DO SEAGRASS BEDS COST?

Median seagrass restoration cost estimate value is ~US\$106,800/hectare

Photo credit: Elisa Alonso Aller Source: Bayraktarove et al. 2015

WORLD BANK GROUP SWORLD RESOURCES INSTITUTE

DISASTER RISK MANAGEMENT WITH SEAGRASS RESTORATION IN TAMPA BAY

2010

2012

2014

THE WORLD BANK

40,000 acres were successfully restored
 Expected outcome: bring water quality improvements, buffer against erosion waves

Images: Smithsonian Ocean Portal, Tampa Bay Estuary Program Annual Report 2016

🛞 WORLD RESOURCES INSTITUTE

THANK YOU

For more information, contact:

Denis Jordy: djordy@worldbank.org Brenden Jongman: bjongman@worldbank.org Brenden Van Zanten: bvanzanten@worldbank.org

Photo credit: Flickr/Stuart Hamilton

GFDRR (world BANK GROUP & world resources institute