

TAFF

Technical Assistance Financing Facility for Disaster Prevention and Preparedness

BLOCK 2: Strengthening Early Warning Systems and Outreach

TAFF Workshop Brussels, October 2-3, 2025

BLOCK 2

Day 1 – Thursday, October 2, 2025

Inspire Room

BLOCK 2: Strengthening Early Warning Systems and Outreach

13:00 -14:30 A series of presentations (15 min each) will feature the latest knowledge on the topic as well as examples (project highlights) of strengthening early warning systems and outreach. The examples will follow a shared template highlighting strategic and operational contribution, knowledge/innovation, and lessons learnt (what worked well, what could be improved, and key take-aways for other countries).

- Sari Lappi, Coordinator, Regional Office for Europe, WMO
- Eric Guyader, EWSS Manager (Defence Industry and Space, DEFIS)
- **Dan Titov**, Head of the IT Department at the State Hydrometeorological Service of the Republic of Moldova
- Denis Chang Seng, Programme Specialist Tsunami Resilience Section UNESCO-IOC

Seconds that Save - Modernizing Early-Warning and Reaching the Last Mile

Sari Lappi
World Meteorological Organization

Technical Assistance Financing Facility for Disaster Prevention and Preparedness

TAFF WorkshopBrussels 2-3 October, 2025

https://www.gfdrr.org/en/taff

Trends in Climate Indicators

Climate indicators show the long-term evolution of several key variables that are used to assess global and regional trends in a changing climate.

Sea surface temperature

Increase since the 1980s

Global (60°S-60°N) +0.6°C

WMO Regional Association VI (Europe) +1.0°C

Mediterranean Sea +1.3°C

Latest five-year averages

Ocean heat content*

Increase since 1993

Global +0.16°C

Northeastern Atlantic +0.03°C

In the upper 2000 m

Sea level

Average annual increase since 1999

Global +3.7 mm

European +2-4 mm

January 1999 to July 2024

Temperature

Increase since pre-industrial (1850-1900)

Global +1.3°C

European +2.4°C

WMO Regional Association VI (Europe) +2.5°C

Arctic +3.3°C

Latest five-year averages

Greenhouse gases

Average annual increase since 2020

Carbon dioxide +2.4 ppm

Methane +12 ppb

Averaged over the whole atmospheric column for 60°S–60°N

Global -9200 km³

Sea ice

Ice loss since the 1980s

Last five years, relative to 1980s

Arctic (September) -2.7 million km² (-36%)

Antarctic (February) -0.7 million km² (-20%)

European -915 km³

Ice loss for Europe does not include peripheral glaciers in Greenland

Ice sheets

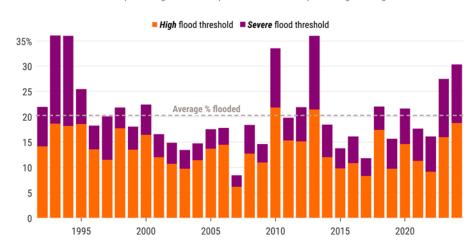
Ice loss since the 1970s

Greenland -6776 km³

Antarctica -5253 km³

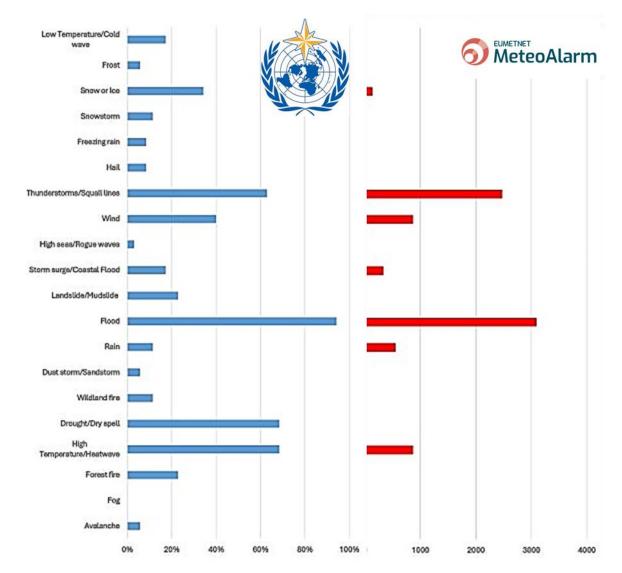
1972–2023 for Greenland, 1979–2023 for Antarctica

*Ocean heat content is traditionally expressed in joules, as it represents the total energy stored in the ocean. To provide a more intuitive understanding of temperature-related changes, this report presents these statistics in °C.



Weather and climate related hazards in Europe

Almost a third of the European river network experienced flooding in 2024


Annual percentage of the European river network experiencing flooding

Data: EFAS · Credit: CEMS/C3S/ECMWF

Percentage of the European river network that exceeded the 'high' (orange) and 'severe' (purple) flood thresholds during 1992–2024 (European State of the Climate 2024 report)

1st graph: Percentage of WMO Members having identified the hazard as their top 5 national priority (2024). Second graph: Total numbers of red warnings in 2023

Early Warnings for All: Structure & Objectives

Disaster risk knowledge

Systematically collect data and undertake risk assessments

- Are the hazards and the vulnerabilities well known by the communities?
- What are the patterns and trends in these factors?
- Are risk maps and data widely available?

Pillar 1

Detection, observations, monitoring, analysis and forecasting of hazards

Develop hazard monitoring and early warning services

- Are the right parameters being monitored?
- Is there a sound scientific basis for making forecasts?
- Can accurate and timely warnings be generated?

Preparedness and response capabilities

Build national and community response capabilities

- Are response plans up to date and tested?
- Are local capacities and knowledge made use of?
- Are people preapred and ready to react to warnings?

Pillar 4

Warning dissemination and communication

Communicate risk information and early warnings

- Do warnings reach all of those at risk?
- Are the risks and warnings understood?
- Is the warning information clear and usable?

Pillar 3

NMHSs are essential for EWSs

Role of National Meteorological and Hydrological Services:

- Develop modern infrastructure and capacity to maintain high standards of observations and data;
- Prepare and deliver high quality early warnings and impact-based forecasts;
- Maintain adequate, well trained human resources to gather, process, archive and exchange data;
- Participate and access **research** that leads to improved monitoring and predictions;
- Understand and integrate the **needs of various user communities** (e.g. emergency management authorities).

Early warning capacities in Europe

Many countries don't have adequate MHEWS systems

Challenges:

- Big gaps in the observing, data processing and forecasting systems;
- Lack of formal links between the stakeholders in the dissemination chain;
- Missing regulatory frameworks that connect early warnings to emergency plans;
- Regional coordination and collaboration → build on and scale up existing efforts and capacities.

Armenia

Element Maturity Scores

*Based the number of currently assessed National Meteorological

Country (■) / Global average*

and Hydrological Services

Legal framework and institutional mechanisms

Observational infrastructure

Hazard monitoring

Remote-sensing data

NWP model and forecasting

tool application

Impact-based forecasting

Warning services & MHEWS

operations

Financial and technological enablers

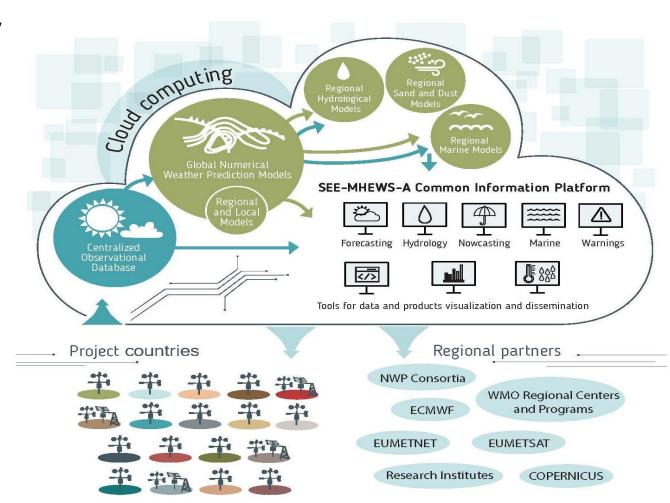
This page presents detailed information on country capacity for hydrometerological monitoring and forecasting, structured along eight elements of the hydrometerological value chain, based on data submitted to WMO by their National Meteorological and Hydrological Services.

Data View

Use the buttons below to switch between viewing the data on the priority hazards and the detailed data making up the overall element scores.

Priority Hazards All da		a - by element			
(No available act	tions)	ought/ Dry	₩ Frost	Riverine Floods	<u>എ</u> Wind
Impact-based forecast and warning services produced	×	×	×	×	×
Roles/responsibilities of all organizations generating/issuing warnings defined	×	×	×	×	×
Self-assessed hazard monitoring capacity level	*.0	**	***	**	**
Standard Alerting Procedures in place with authorities and stakeholders	×	×	×	×	×
Use of RSMCs guidance products	×	×	×	_	×
Use of satellite data for hazard monitoring	0	Ø	0	×	0

Source: WMO Monitoring System, 2025


(F)

Scale-up existing regional initiatives (SEE-MHEWS-A)

South-East European Multi-hazard Early Warning Advisory System

(SEE-MHEWS-A)

- Improve collaboration in hazard identification
- Jointly create a MHEWS
- Collaborate on the operational data exchange
- Sustain in continuous development and maintenance of the common system
- Great potential for testing new technologies such as Al

Al and ML reshaping the forecasting

All is reshaping forecasting: state-of-the-art weather predictions with far less computing power have already proven capable of producing reliable short-to-medium-range weather forecasts \rightarrow will extend to other areas.

Challenges: NMHSs must keep pace and carefully integrate AI into operations while maintaining sovereignty and trust.

Opportunities:

- Al pilot projects e.g. "Forecast-in-a-Box": A
 portable Al-powered weather forecasting system,
 developed by MET Norway, tested in Malawi, and
 being adapted for new pilots (including in
 Europe).
- Considerable potential in earth observations manage large datasets, find new insights in data, generate new products and services.
- Democratize access, enabling all countries to leapfrog to advanced forecasting.

E-AI (EUMETNET): Europe's coordination hub

- What it is: A programme under EUMETNET coordinating Al across the forecasting value chain, with active working groups incl. WG1 (Data Curation), WG3 (Ops/MLOps), WG6 (Nowcasting).
- 20 NHMS, EUMETSAT, ECMWF, About 400 participants, dedicated experts or points of contact.
- Why it matters for EW4ALL: Shared data, tools and practices → faster adoption, reproducibility, and less duplication across NHMS.
- Nowcasting community (WG6/MLCast): Open, Europewide effort to ship an MLCast package (v1 target: end-2025) with shared datasets, pre-trained models, and verification tools.

E-Al Programme Manager: Roland Potthast @ DWD

Nowcasting to support rapid response

- Support operationalization of nowcasting models for short-term weather predictions, to rapidly respond to evolving weather conditions.
- Highest life-saving leverage in 0–6 h.
- Flash floods, severe convection, winter storms and orographic rain dominate in Europe

 → nowcasting is pivotal.

Nowcasting-in-a-Box (concept for EW4AII)

Proposal to develop — not an existing product

- Purpose: Portable, verifiable nowcasting stack (ML + non-DL) packaged in a container for easy deployment / maintenance.
- Why: Accelerate NHMS adoption; reduce vendor lock-in; enable fair intercomparison and twinning/training.
- Core components: Data adapters, Model runner, Post-processing, Visualisation, Storage/export, Verification kit
- Where it runs: Self-contained container/bundle on laptop / HPC / European Weather Cloud.
- **Alignment:** Builds on E-AI WG1/WG3/WG6; inspired by Forecast-in-a-Box.

Forecast in a Box - Credit: ECMWF

Testing Warnings, Building Resilience

- WMO prepared an EW4All Rapid Assessment for 11 countries in South-East Europe, South
 Caucasus and Middle-East: EWSs are not subjected to regular system-wide tests and exercises in
 none of these countries.
- When tests or exercises are conducted, NMHSs are often not included.

Proposal

- Operational crisis simulations related to hydrometeorological hazards (e.g. floods) with strong involvement of NMHSs in addition to all other national stakeholders.
- Potentially part of existing regional initiatives (e.g. SEE-MHEWS-A)

Expected outcomes

- Test functionality of EWSs under real or simulated hazard conditions.
- Assess coordination between NMHSs, civil protection, local authorities, and the public.
- Evaluate communication: clarity, reach, speed, and comprehension of warnings.
- Improve preparedness: identify bottlenecks, build trust, and update plans and procedures.

Thank You & Contacts

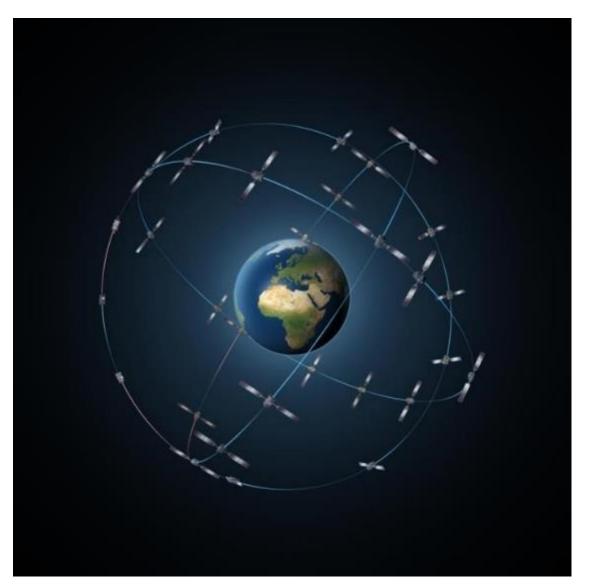
Sari Lappi

Coordinator
Regional Office for Europe
World Meteorological Organization
Email: slappi@wmo.int

Technical Assistance Financing Facility for Disaster Prevention and Preparedness

TAFF Workshop
Brussels 2-3 October, 2025

https://www.gfdrr.org/en/taff



Alerting citizens with Galileo The Emergency Warning Satellite Service

TAFF workshop • Brussels, 2-3 October 2025

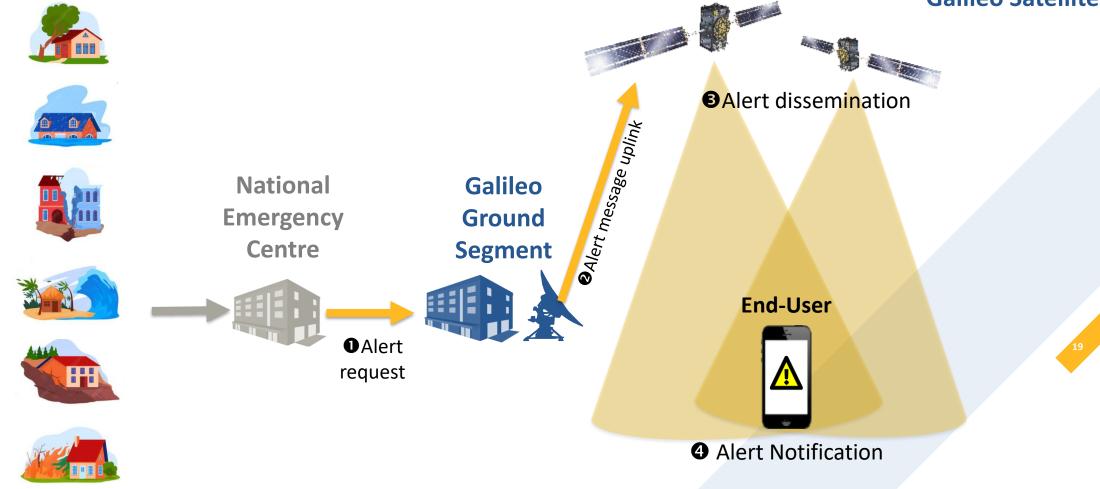
GALILEO TODAY

- Critical infrastructure of the EU
- 32 satellites in orbit
- Operational services, or in rollout phase
- Unrivalled performance
- Modernization on-going

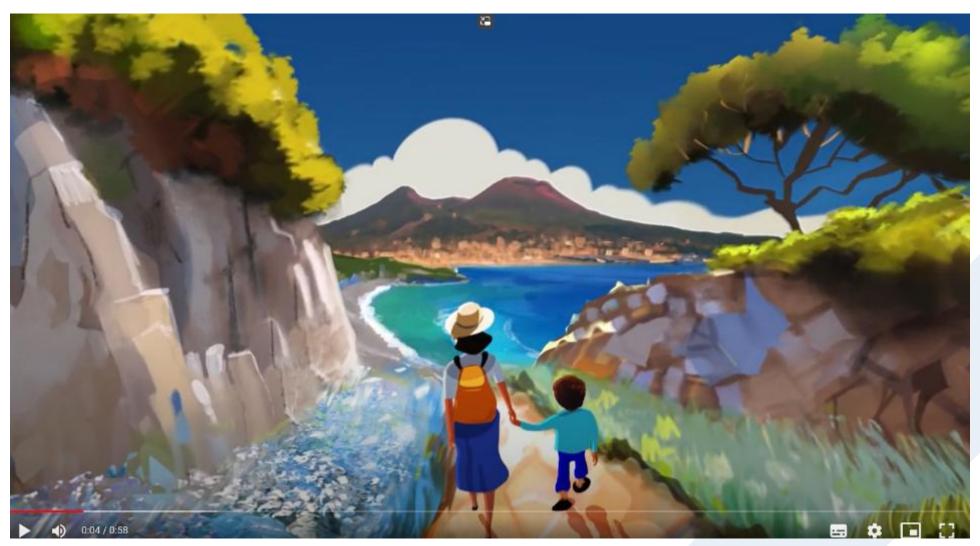
A satellite channel offered to EU National Authorities,

Based on the European GNSS constellation Galileo,

For broadcasting warning messages to population in case of looming disaster.



SERVICE CONCEPT


Galileo Satellites

> Time to disseminate the alert: ~ 1 minute

EWSS TEASER

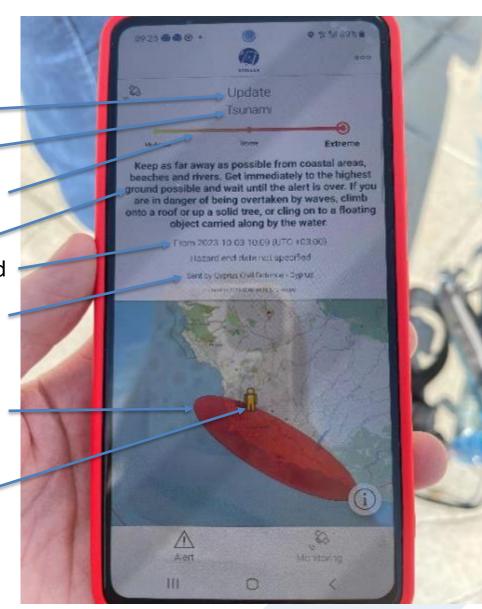
Click to play

DISPLAY OF ALERT MESSAGE

Type of alert

Type of hazard

Severity of hazard


Instruction

Chronology of hazard

Originator of alert

Alert area (ellipse)

YOUR POSITION

WHERE WE ARE

GALILEO EGNÓS

- ✓ In-field demonstration campaign finished
 - 4 locations in EU (FR, DE, CY, BE/LU). All very successful!
- ✓ Message format specification available*
 - Joint effort EU-Japan (Galileo-QZSS)
 - Message content available in 25 languages
- Introduction of the capacity in the Galileo system
 - All contracts signed and on-going
 - Service declaration: 2026
- Introduction of the capacity in EU MS
 - EU contrib. : Pilot phase on-going for MS to test the service
 - EU contrib.: Technical assistance for setting up the I/F with Galileo
- Introduction of the capacity in user devices
 - EU contrib. : Smartphone app' available in 2025 (Android + iOS)
- Regular coordination with DG ECHO and United Nations (EW4ALL)

SUMMARY

- Service coverage: Global
- Robust to disasters: no terrestrial base station
- Multi-language alert service: thanks to the use of libraries
- Geofencing of the alert:
 - > end-users are alerted only if located within the affected area
 - \triangleright size of alert area: diameter configurable (50 m < \emptyset < 5000 km)
- Time to disseminate the alert: ~ 1 minute
- No dedicated, exotic equipment needed: GNSS-enabled device with a screen is sufficient
 - Mobile (smartphone, car navigator, handheld, etc)
 - Static (billboard, digital panels, bus stop, subway station, etc)
- By nature, a subject for international cooperation
- Financial support in EU MS necessary to integrate this new channel

THANK YOU

Modernization of the State Hydrometeorological Service of the Republic of Moldova

A Component of the

Strengthening Moldova's Disaster Risk Management And Resilience Project (SMORE) financed by the World Bank

TAFF

Technical Assistance Financing Facility for Disaster Prevention and Preparedness

TAFF WorkshopBrussels 2-3 October, 2025

https://www.gfdrr.org/en/taff

Country Context

Floods and droughts – the most important hazards

- High exposure to flood risks: approximately 659 settlements (42%) are at risk of flooding.
- Likelihood of multi-year droughts to increase: if not properly managed, impacts could be devastating to the economy.
- Combined losses over the past decade: USD 1.2 billion in damage

Other hazards

- Extreme heat: 7 out of the 10 warmest years in Moldova's history in last 20 years
- Hail
- Strong winds
- High climate sensitivity: Moldova ranks among the most climate vulnerable countries in Europe and Central Asia
- Goal: Timely and effective hydromet services for mitigating adverse impacts of weather and climate events
- Achieving the goal: Through improving capabilities of the national hydromet services provider in Moldova

SMORE Project Overview

- The World Bank-financed Strengthening Moldova's Disaster Risk Management and Resilience (SMORE) Project (US\$40 million) was approved September 5, 2024.
- Project Development Objective: To enhance Moldova's preparedness and response to natural hazards and climate-related shocks, and in case of an eligible crisis or emergency, respond promptly and effectively to it.
- Key Components:
- Investments and Institutional Strengthening for Emergency Preparedness and Response (US\$29.5 million)
- 2. <u>Improving Hydrometeorological Services (US\$6.5 million)</u>
- 3. Policy and Regulatory Support for Risk Reduction of Critical Infrastructure and Fiscal Resilience (US\$2.5 million)
- 4. Contingent Emergency Response Component (CERC) (US\$ 0)
- 5. Project Management (US\$1.5 million)

SMORE Component 2: Improving Hydrometeorological Services (US\$6.5 million)

Objectives:

- Support the strengthening of the SHS's:
 - meteorological and hydrological monitoring networks
 - production of forecasts and warnings capacity;
 - delivery of weather, hydrological, and climate services.
- The modernization of the country's EWS is a key input to the GIES-planned Public Warning Systems being operationalized through the SMORE Project.
- The improved weather and hydrological forecasting and climate services will provide a critical value add in decision-making for a variety of public and private users, particularly farmers, in the context of increasing drought frequency and severity. A well-functioning SHS will also contribute to compliance with the EU legislation.
- The implementation of Component 2 is supported by a grant financed by the Technical Assistance Financing Facility for Disaster Prevention and Preparedness (TAFF).

Overview of SHS: Responsibilities, Structure

- SHS is the only one governmental agency in Moldova mandated by the legislation and responsible to provide weather, hydrological and climate services.
- The responsibilities of SHS include:
 - o Monitoring, collecting and analysis of data and their international exchange
 - Complying with metrology and standardization regulations
 - Preparing and disseminating forecasts and warnings
 - Managing and developing the National Fund of Meteorological and Hydrological Data
- This work is done by the SHS:
 - Forecasting and Warning Centre
 - Meteorological and hydrological monitoring centre
 - Administration and technical support centre
 - Regional monitoring network

Overview of SHS: Technical Capacities

• Services:

- Public weather services: Short, medium, and long-range weather forecasts and warnings.
- Disaster Management : Collaboration with the GIES
- Agriculture: Need for drought monitoring system, software for calculating indices, training in new techniques, and direct communication with the agricultural sector
- Water resources and flood forecasting: forecasts and warnings produced
- o Climate: analyses, monthly and seasonal predictions, need for climate database management system and long-term climate predictions.

Overview of SHS: Technical Capacities

- Monitoring and Observation Systems:
 - Meteorology and hydrology networks— Need for rehabilitation, calibration, expansion, software for data conversion, nowcasting, spare parts, upper air observations, real-time quality control
- Modelling and Forecasting Systems:
 - Global and regional models used for weather forecasting, but hydrological models are needed, limited expertise in radar and satellite applications, outdated software, insufficient trained forecasters, need for improved user feedback mechanisms
- ICT Systems:
 - Outdated software, lack of automation, and full data integration

Key Findings or Highlights: Analytical Base

Analytical Base: SHS Modernization Roadmap (finalized in June 2025) financed under the TAFF technical assistance grant. The Roadmap is expected to be published in November.

A STRENGTHENED AND FIT-FOR-PURPOSE
STATE HYDROMETOROLOGICAL SERVICE IN
MOLDOVA
A RoadMap

ABSTRACT

A summary of the analysis of the current operational and human capacity of the State Hydrometeorological Service (SHS) in Moldova, description of global good practices for operation of Meteorological and Hydrological Services and recommendations for a strengthened SHS.

SMORE Component 2: Improving Hydrometeorological Services

Addresses SHS capacity gaps and is based on the Roadmap financed by the TAFF grant:

Subcomponent 2.1: Modernization of Hydrometeorological Monitoring Systems and ICT Capabilities (US\$4.3 million)

- construction of critical observing stations;
- o rehabilitation of existing observing stations with new sensors and telemetry;
- o replacement of selected accommodations at traditional observing stations with modular buildings;
- o establishment of an upper air observation system
- upgrading and renovation of existing weather radar and installation of a lightning detection system;
- improvement of hydrometeorological monitoring systems;
- enhancement of ICT capabilities;
- establishment of a data archive and setting up of a Climate Data Management System; associated training packages where needed.

Subcomponent 2.2: Improving SHS Service Delivery by Enhancing SHS Forecasting Capabilities, Institutional Strengthening, and Regional Collaboration (US\$2.2 million)

- o acquisition and implementation of a nowcasting system,
- introduction of sectoral-based forecasting,
- development of hydrological modelling and forecasting,
- o enhancement of the use and application of other regional and global meteorological models

Timeframe for Strengthening Services of the SHS

Medium-term (5 years) Objectives:

• Addressing all the gaps in *Observation Infrastructure; Modelling Capabilities; Forecasting Capabilities; Service delivery; ICT Capabilities; Human Capacity*

Short-term (2 years) High Priority Activities:

 Addressing the most immediate priorities in all technical areas to achieve improved service delivery as quickly as possible

Cost of Modernization of SHS

Over 5 years

- Overall investment of US\$ 6.5 million under WB SMORE Project
 - US\$ 760k for training and capacity building
 - The O&M expenditure of US\$ 478k per year to ensure the sustainability of this investment.

Over 2 years

- High-priority activities of around US\$ 2.9 million
 - US\$ 235k for training and capacity building
 - The O&M expenditure of US\$ 242k per year to ensure the sustainability of this investment.

Partnerships and Collaboration with Development Partners

- Collaboration with development partners and more advanced European NHMS is essential for support to SHS technical development
- An example: "Strengthening Hydrometeorological Capacity in Moldova (SHC Moldova)" project implemented by Swedish Meteorological and Hydrological Institute (SMHI):
 - A capacity development initiative financed by Sweden to enhance technical skills in weather, climate, and hydrological services at SHS
 - Timeframe: 2024-2029
 - Budget: SEK 30, 000, 000 (3.2 US\$)
 - Focus: meteorological nowcasting, hydrological modelling, early warning, and improved data management and dissemination.

Key Lessons Learned or Take Aways

- The Project to modernize SHS operations is just getting underway—not many lessons learned yet.
- One key lesson already learned: Given complexity of hydromet modernization projects, ample time was spent to prepare the Project, including several WB missions and close collaboration between the WB and SHS to finalize the details of the Roadmap and investment plans. Technical assistance provided was key to these efforts.
- Next steps: Start the implementation of the Roadmap recommendations including procurement activities, and capacity building based on an annual workplan.
- Activities proposed in the SMORE Project are replicable in other hydromet services.

Conclusion

- Accurate, timely and actionable weather, climate, and hydrological information supports decision-making in critical sectors.
- The activities proposed in the Roadmap are essential first steps in line with the goals of SMORE, towards transforming SHS into a fully capable modern NMHS.
- Furthermore, the Roadmap highlights that:
 - Ensuring sustainable funding for operation and maintenance (O&M) is essential to maintain the benefits of the investments
 - Innovative approaches and public-private partnerships can help support long-term sustainability
 - Collaboration with development partners and more advanced NMHS is a highly effective way to acquiring skills and developing capacity

Thank You & Contacts

Dan Titov
IT Department
State Hydrometeorological Service
134 Grenoble str, Chisinau, MD 2072
Republic of Moldova
+ 373 22 77 35 47
dan.titov@meteo.gov.md
www.meteo.md

Technical Assistance Financing Facility for Disaster Prevention and Preparedness

TAFF Workshop
Brussels 2-3 October, 2025

https://www.gfdrr.org/en/taff

Intergovernmenta Oceanographic Commission

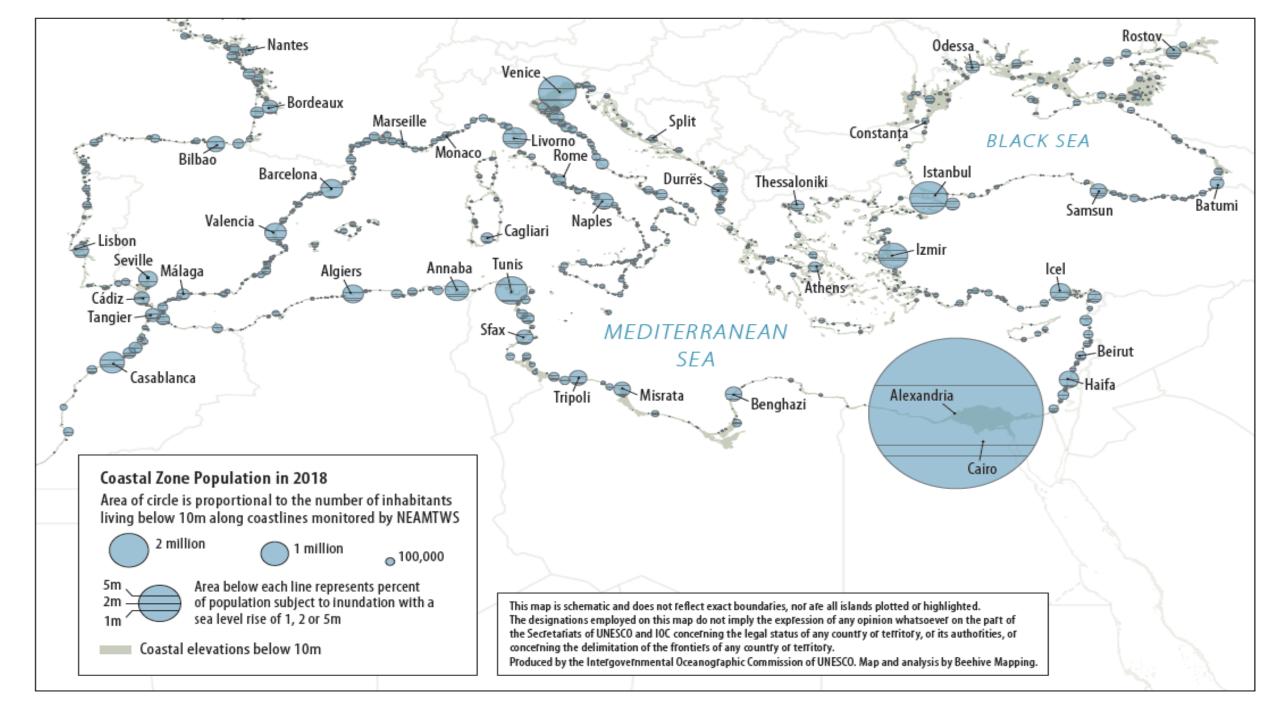
IOC UNESCO EU DG ECHO

CoastWAVE Project

Denis Chang Seng, PhD

Programme Specialist
Technical Secretary (ICG-NEAMTWS & TOWS TT Disaster
Management and Preparedness)
CoastWAVE Project Responsible Officer
Tsunami Resilience Section
UNESCO IOC

Technical Assistance Financing Facility for Disaster Prevention and Preparedness


TAFF Workshop Brussels 2-3 October, 2025

https://www.gfdrr.org/en/taff

Regional Context

- Mediterranean & Atlantic Risks: Both regions face significant tsunami hazards from seismic activity, submarine landslides, and fault zone earthquakes, with historical events (1908 Messina, 1755 Lisbon) showing their destructive potential.
- High Exposure: Dense populations, vital infrastructure, and tourism-heavy economies along coasts heighten vulnerability to future events.

IOC DG-ECHO Funded CoastWAVE 2.0 Project

Amount: 1.2 M Euros -Phase –II

• **Start:** 1 July 2024

• **Duration**: 2 years

• Direct Beneficiary Countries:7

Scaling-Up and Strengthening the Resilience of Coastal Communities in the North-Eastern Atlantic and Mediterranean Regions to the Impact of Tsunamis and other Sea level-related coastal hazards.

Implemented with the ICG-NEAMTWS Framework

Objectives

- Strengthen collective capacities in tsunami hazard assessment and evacuation mapping
- ii. Enhance understanding of tsunami risk by tracking changes in awareness and risk perception.
- iii. Improve preparedness through the installation of additional tsunami detection, monitoring, and alerting systems.
- iv. Expand the number of UNESCO-IOC Tsunami Ready Recognized Communities in existing and new countries, while promoting synergies with other coastal resilience initiatives (e.g., Making Cities Resilient 2030).
- v. Foster inclusive engagement and dialogue on HILP with diverse stakeholders to advance coastal resilience from a multi-hazard and multi-risk perspective.

CoastWAVE 2.0 Project Outcomes

Improved tsunami hazard assessments.

2

Enhanced understanding and communication of tsunami and other sea level-related risk 3

More coastal communities and countries in the NEAM region joining the Tsunami Ready 4

Increased/improved access to near realtime detection and alert technology 5

Enhanced knowledge on addressing High Impact, Low Probability tsunamis, with strategies to integrate them into MH approaches

UNESCO IOC CoastWAVE Project Team

Head of Section/Supervisor

Project Assistant a.danilova@unesco.org

Programme Specialist CoastWAVE Project Responsible Officer d.chang-seng@unesco.org

Derya Vennin Associate Project Officer/ Coast WAVE project coordinator d.dilmen-vennin@unesco.org

TAFF

Technical Assistance Financing Facility for Disaster Prevention and Preparedness

TAFF Workshop Brussels 2-3 October, 2025

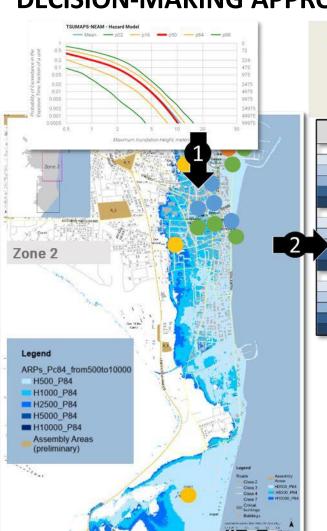
https://www.gfdrr.org/en/taff

Key Findings and Highlights

	IMPLEMENTING PROJECT PARTNERS/ STAKEHOLDER ENGAGEMENT	PARTNERS AND PRIMARY SUPPORTING STAKEHOLDERS
Italy	INGV-Istituto Nazionale di Geofisica e Vulcanologia	 Municipality of Pachino. Civil Protection of Pochino Emergency responders of City of Marzamemi
France	University of Montpellier	Nice MetropoleCEA-CENALT
Egypt	NIOF-National Institute of Oceanography and Fisheries	 Damietta Governorate. Damietta Tourism Authority. Damietta Hotels and Restaurants associations. Information and Decision Support Center (Crisis and Disaster Management Sector, and Risk Reduction). The Egyptian General Authority for the Protection of the Beache
Spain	FIHAC-Fundación Instituto de Hidráulica Ambiental de Cantabria	 Cadiz City Council Civil Protection of the Cadiz City Council DGPCE, IGN, IEO, DGEPC Junta Andalucía)
Türkiye	KOERI, AFAD-Istanbul-The Disaster and Emergency Management Authority and METU	 Metropolitan Municipality of Istanbul Municipalities of Tuzla and Kartal The Disaster and Emergency Management Authority/Ankara
Portugal	Municipality of Loule-Civil Protection Department Municipality of Cascais-Civil Protection Department	 Municipality of Loule-Civil Protection Department Municipality of Cascais-Civil Protection Department Tourism Authorities of Louile and Cascais
Morocco	CNRST-Centre National pour la Recherche Scientifique et Technique (Maroc) (CNRST)	 Municipality of Larache Emergency responders of Larache

Tsunami Hazard Risk Assessments & Evacuation Mapping

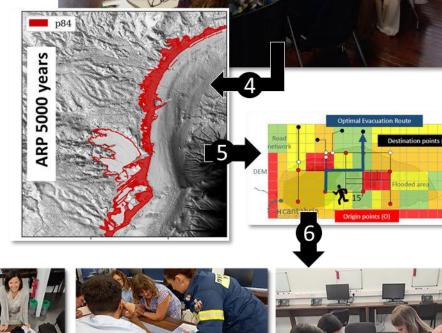

Tsunami Hazard / Risk Assessments and Evacuation Mapping


HCantabria

STREET OF MERCAL ADDRESS BEFORE FOLLOWING

Max Inun Population Crit Bld

LARNACA (CYPRUS)



icio Aguirre Ayerbe – TOWS TT DMP ICG NEAMTWS Rep

Multi-stakeholder development of evacuation maps based on PTHA and Evacuation models

	Perc.	ARP	probability (%)	probability (%)	Area (km²)	depth (m)	Exposed	Exposed
	P50	500	0.2	10	1.56	2,64	736	9
	P50	1000	0.1	5	3.04	3.1	1976	16
	P50	2500	0.04	2	4.93	3.8	4946	33
	P50	5000	0.02		5.77	4.1	6202	34
	P50	10000	0.01	0.5	6.22	4.3	7435	35
	P84	500	0.2	10	2.57	3	1474	13
	P84	1000	0.1	5	4.43	3.6	4198	30
×	P84	2500	0.04	2	5.82	4.2	6265	34
	P84	5000	0.02	1	7.84	4.5	1.0597	51
	P84	10000	0.01	0.5	8.56	4.9	11320	7.7
	P98	500	0.2	10	4.45	3.7	4190	30
	P98	1000	0.1	5	5.13	4.1	5360	33
	P98	2500	0.04	2	7.49	4.4	9623	46
	P98	5000	0.02	1	8.55	4.8	11303	77
	P98	10000	0.01	0.5	9.29		11562	86

Understanding and Communication of Tsunami and other Sea Level-Related Risk

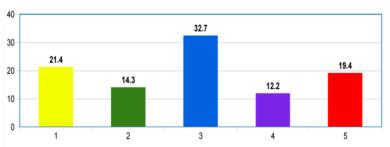
- Understanding awareness and preparedness levels
- Identifies knowledge gaps, social vulnerabilities,
- Improved risk communication, training and capacity building strategies

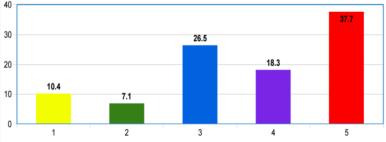
Community Perceptions of Coastal Sea-Level Related Hazard Risks

A Survey Implemented by the UNESCO-IOC DG/ECHO CoastWAVE Project Partners in the North-Eastern Atlantic, Mediterranean and Connected Seas (NEAM) Region

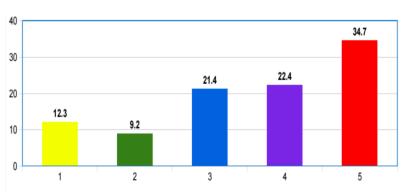
5 most important findings from the survey (Early Phase during Project Implementation)

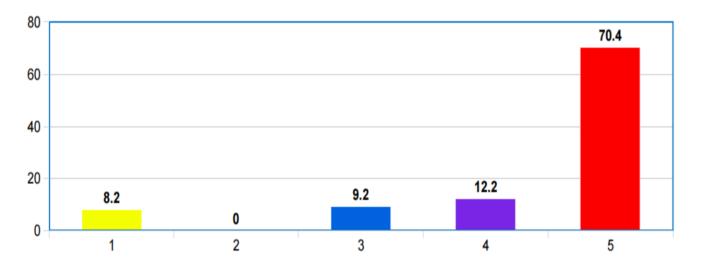
- Strong concern, weak preparedness Despite increasing awareness of tsunamis and sea level rise, half of respondents take no precautionary measures, and 50% report missing evacuation signs.
- Perceived municipal capacity gap Up to 40% doubt the municipality's ability to alert and inform the population, while over a quarter lack awareness of existing capacities and infrastructure.
- Generational bias in perceptions Education level has little influence, with younger respondents dominating the survey and shaping results.
- Alert communication mismatch Respondents prefer audible alerts, yet civil protection agencies prioritize SMS warnings, creating a disconnect.
- Collective action mindset While many place responsibility on municipalities, 30% also highlight the community's role, showing openness to shared disaster management approaches.
- Surveys/ study progressing in Coast WAVE 2.0 project countries





Ras El Bar, Egypt Tsunami Risk Perception Survey Key Points

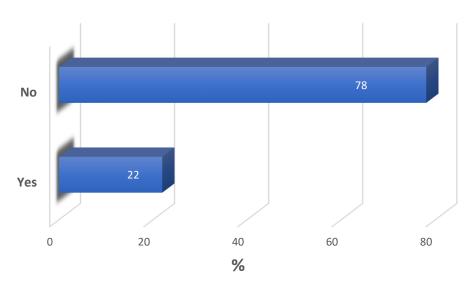



Likelihood of a tsunami in Ras El Bar within 10 years (1 = very low, 5 = very high).

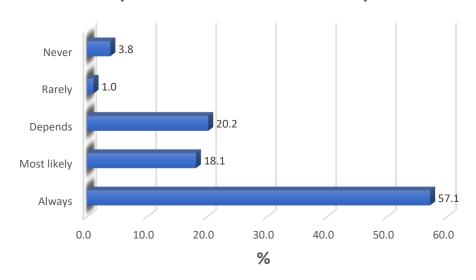
Risk to Human Lives from Marine Hazards (1 = very low, 5 = very high).

Risk of property damage from strong waves/flooding (1 = very low, 5 = very high).

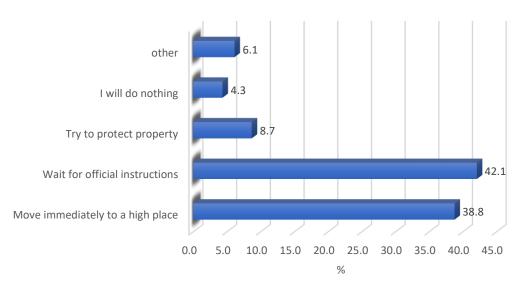
Importance of Evacuation Maps and Shelters (1 = very low, 5 = very high).

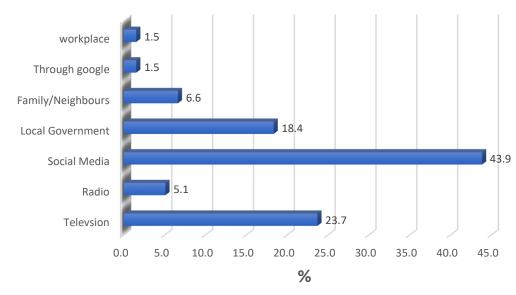


Family evacuation plan for marine emergencies

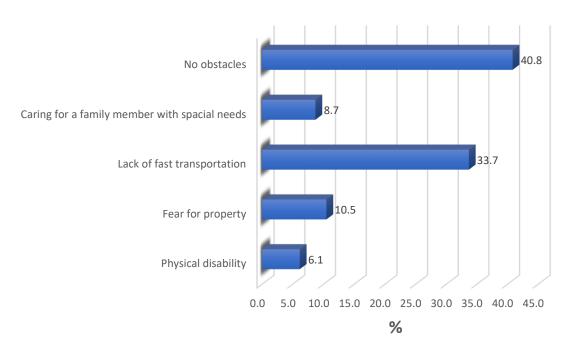

NIOF, 2025

-Bar, Ras CoastWAVE 2.0

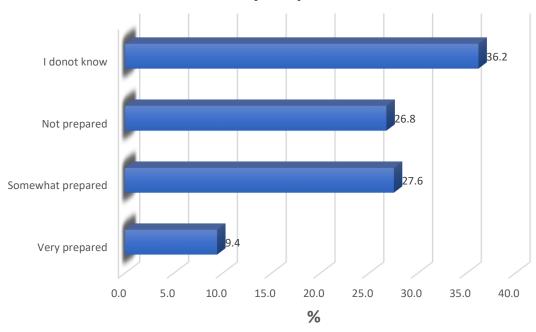

Ever attended a drill or lecture about marine hazards


Compliance with Evacuation Requests

First Action During a Tsunami Warning

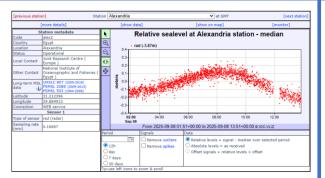


Sources of Information about Marine Hazards



NIOF, 2025

Obstacles to Evacuation


Assessment of City Preparedness

Summary Ras El Bar, Egypt Tsunami Risk Perception

- High female engagement 75.5% of non-resident and female respondents show strong interest.
- Immediate concerns: Waves and flooding seen as greater threats than tsunamis.
- Dual risks: High concern for both human lives and property damage.
- Clear demand: Strong link to MHEWS and coastal resilience strategies.
- Preparedness gap: Evacuation maps and shelters identified as urgent needs.
- Household shortfall: Low levels of personal preparedness.
- Confidence crisis: Most respondents doubt their ability to respond effectively in a marine emergency.

Improved Access to Real-Time Detection and Alert Technology

Alexandria ATG station in the IOC VLIZ Sea-level Monitoring Facility

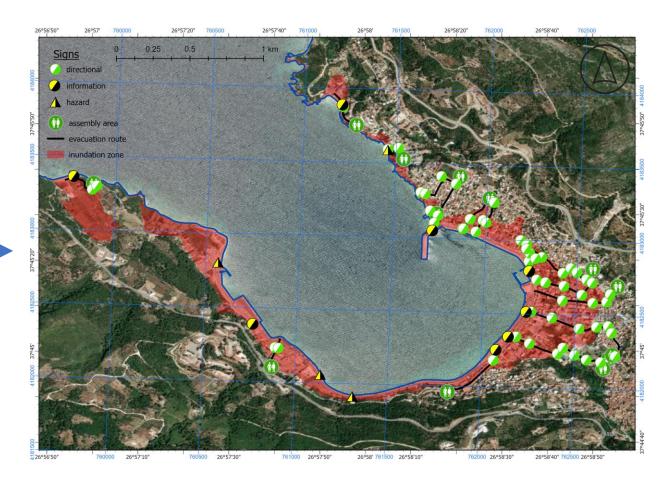
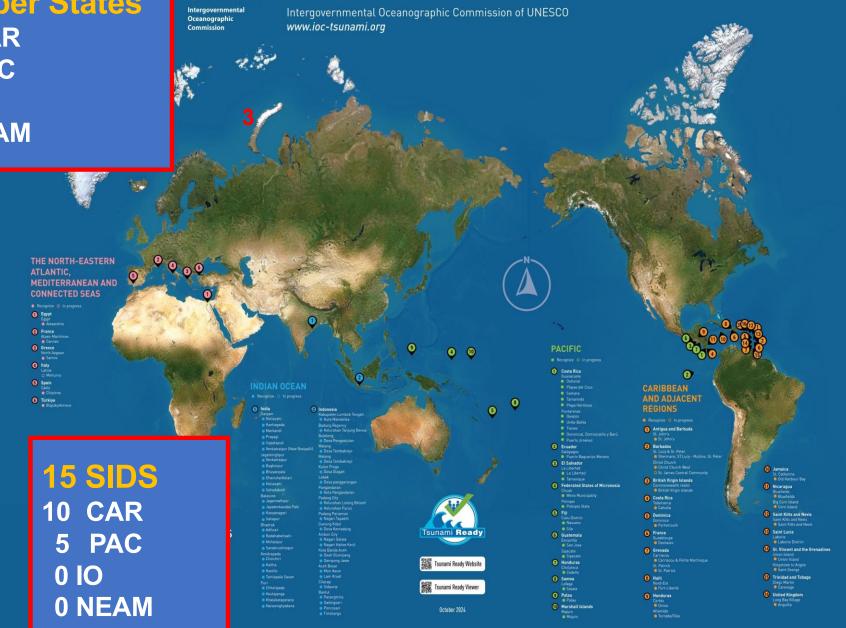

Sirens installed in Chipiona beacg, Spain

Photo Credit: IHCantabria

Tsunami Signages

Table 7. Summary of public signage needs assessment

Location	Total # of evacuation routes, assembly areas, tsunami danger zones
Cyprus, Larnaca	60 signage installed, including assembly sites, evacuation routes, informational panels, and hazard zones
Egypt, Alexandria	Temporary signages until all authorizations are taken from the relevant agencies for 20km coastline of Alexandria.
Samos, Greece	8 tsunami informational panels, 4 hazard zone signs, 61 evacuation route signs, 15 assembly area signs installed.
Malta, Marsaxlokk	In addition to what had been installed during the Last Mile Project, 2 informational panels installed
Morocco, El Jadida	17 evacuation route signs installed
Spain, Chipiona	107 Evacuation route signs, 32 assembly point signs installed for 8 designated points
Türkiye, Büyükçekmece	Had already been installed during JRC Phase-I Last Mile Project. 59 Evacuation route signs, 27 safe zone signs and 31 informational panels on the whole coastal zone of the Istanbul Metropolitan area


100 Mem
14 CA
18 PA
Tsunami Re 2 10

Communiti

30 / 139
Member States
14 CAR
18 PAC
2 IO
6 NEAM

unesco

48 INDIAN OCEAN
23 CARIBEAN &
ADJACENT REGIONS
23 PACIFC
6 NORTH EASTERN
ATLANTIC,
MEDITERRANEAN
AND CONNECTED
SEAS

UNESCO-IOC TSUNAMI READY

RECOGNITION PROGRAMME (TRRP)

Tsunami Ready Recognized Communities in NEAM

Cascais Portugal

[Close to complete]

Loule
Portugal
[Close to
complete]

Chipiona
Spain
[Recognized]

Cadiz
Spain
[Progressing]

Larache Morocco [Progressing]

El Jadida Morocco [Close to complete]

Palmi Italy

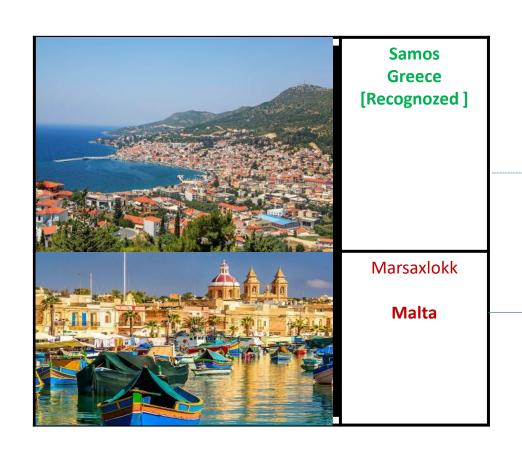
[In progress]

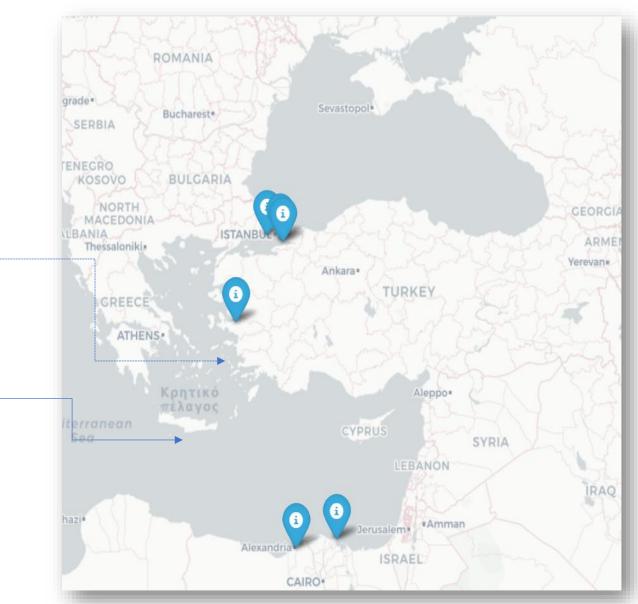
Minturno Italy

[Recognized]

Marseille France

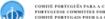

[In progress]


Nice France


[In progress]

Cannes
France
[Recognized]

Expert Meeting of UNESCO-IOC Expert Meeting on Tsunami Sources Associated with Hellenic Arc and Azores—Gibraltar Fault Zone in the North-Eastern Atlantic, the Mediterranean, and Connected Seas (NEAM) Region Link here


- Seismic sources
- Non-Seismic (volcano and landslide)

Evacuation Mapping Workshop Strengthens Tsunami Preparedness in the North-Eastern Atlantic and Mediterranean Region Partnership: From 30 June to 4 July 2025, the University of Montpellier Paul-Valéry, through its Geography and Spatial Planning Laboratory (LAGAM), hosted a scientific workshop on tsunami evacuation mapping as part of the CoastWAVE 2.0 project.

1755 LISBON EARTHQUAKE AND TSUNAMI

On November 1th, 1755, a powerful earthquake struck Lisbon, followed by a massive tsunami that devastated much of Portugal's coastline and beyond. This event remains one of the most destructive tsunamis in European history, claiming tens of thousands of lives and reshaping disaster risk awareness in the region. 270 years later, as the world faces increasingly complex climate and geological hazards, and increased coastal population and exposure, the Lisbon Tsunami serves as a historic reminder of the importance of preparedness, resilience, and international cooperation

THE COMMEMMORATION EVENT

Hosted by the Municipality of Cascais, the event aims to honor the memory of those lost in the 1755 Lisbon Tsunami while raising public awareness on tsunami risk and preparedness. It highlights international, national, and local efforts in early warning and risk reduction, promotes the UNESCO-IOC Tsunami Ready Programme, and showcases community-led resilience initiatives. By fostering dialogue among policymakers, scientists, emergency responders, and communities, the event will strengthen collaboration between stakeholders at all levels.

Target Audience: 150 participants including ministers, heads of state and government representatives, UN agencies and relevant international organizations, national and local Civil protection agencies and other authorities, scientists, and experts, youth and educational institutions, media and the general public. Exact numbers will be confirmed following the registration process.

Expected Outcomes:

- ·Enhanced public awareness of tsunami risk and early warning systems.
- Strengthened collaboration between stakeholders at all levels.
- Recognition and promotion of best practices in community preparedness.
- ·Media coverage amplifying messages of tsunami resilience

ABOUT TSUNAMI READY:

The UNESCO-IOC Tsunami Ready Recognition Programme aims to build resilient coastal communities through preparedness strategies that reduce loss of life, livelihoods, and property. To date, 100 communities in 30 countries have been recognized, and over 30 tsunami exercises have been conducted globally, with the largest involving 800,000+ participants.

Upcoming Activities/Events

Regional Workshop on Tsunami Modeling and Inundation, Jan/Feb 2026

NEAMWAVE Exercise 26 with the participation of Project Countries, March 2026

HILP /MHEWS Dialogues, April/May 2026

Key Lessons Learned or Take Aways

What worked well?

- i. Framed and implemented around ICG/NEAMTWS (Effectiveness and sustainability)
- ii. IPAs (demonstrate partner commitment and contribution but also challenging process. Some local partners demonstrate genuine committed leadership
- iii. Understanding risk (risk perception) as the basis to effective implementation of project and DRR tools
- iv. Cross-country collaboration, expert exchange, and stakeholder engagement strengthened.
- v. Project spearheaded exercises/drills for the first time at the local level

What were limitations / constraints/Challenges?

- i. Overall resources were limited compared to the project's ambitions/interests.
- ii. Establishment of NTRB & Multi-partnerships challenges
- iii. Changing political landscape at the local level
- iv. Standardized hazard assessment e.g. Deterministic and PTHA methods, capacity differences

Recommendations for other countries/regions

- i. Activities and tools are replicable, scalable and adaptable
- ii. Activities/TRR programme integrated within a MH and resilience context

Evolution of Global Tsunami Warning and Mitigation System

EC DG ECHO
Cooperation
ENDORSED
OCEAN
DECADE
PROJECT

1965

International Aspects of the Tsunami Warning System in the Pacific 1977

The Honolulu
Observatory renamed
Pacific Tsunami
Warning Center PTWC

1989

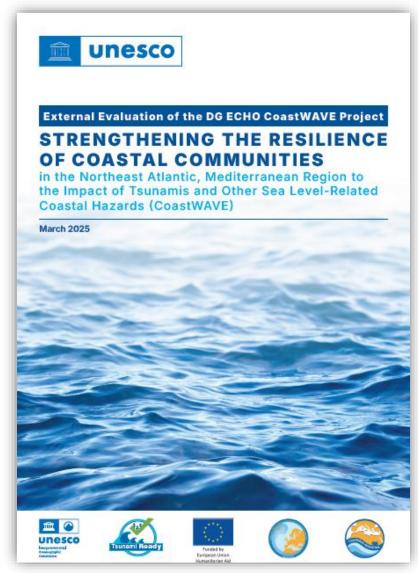
First Master Plan 2004

Indian Ocean Tsunami 2005

New ICGs

2022

Ocean Decade Tsunami Programme


Regional(Pacific) coordination and cooperation

Global coordination and cooperation

Reinforced global coordination & cooperation

Regional-Global KPI M & T Tool

IOC DG-ECHO Funded CoastWAVE Project-I

Thank You

UNESCO IOC CoastWAVE Project Team

Head of Section/Supervisor

Project Assistant a.danilova@unesco.org

Denis Chang Seng

Programme Specialist CoastWAVE Project Responsible Officer d.chang-seng@unesco.org

Derya Vennin

Associate Project Officer/ Coast WAVE project coordinator d.dilmen-vennin@unesco.org

TAFF

Technical Assistance Financing Facility for Disaster Prevention and Preparedness

TAFF Workshop Brussels 2-3 October, 2025

https://www.gfdrr.org/en/taff

